1. Môn Toán
  2. khoảng cách từ một điểm tới một mặt phẳng
khoảng cách từ một điểm tới một mặt phẳng
Thể Loại: TIPS Giải Toán 11
Ngày đăng: 25/02/2018

khoảng cách từ một điểm tới một mặt phẳng

Quý thầy cô và học sinh đang tham khảo khoảng cách từ một điểm tới một mặt phẳng, bộ đề thi được xây dựng bám sát chuẩn toán cập nhật nhất. Cấu trúc đề bảo đảm độ phủ kiến thức đồng đều, mức độ câu hỏi được cân chỉnh từ nhận biết đến vận dụng cao, phù hợp kiểm tra toàn diện năng lực. Hãy khai thác triệt để tài liệu này để đánh giá chính xác trình độ hiện tại và tối ưu chiến lược luyện thi của bạn.

Bài viết hướng dẫn cách xác định và tính khoảng cách từ một điểm đến một mặt phẳng trong không gian, đây là dạng toán thường gặp trong chương trình Hình học 11 chương 3: Quan hệ vuông góc, kiến thức và các ví dụ trong bài viết được tham khảo từ các tài liệu hình học không gian được đăng tải trên MonToan.com.vn.

Bài toán: Xác định khoảng cách từ điểm \(M\) đến mặt phẳng \((P).\)

Để xác định khoảng cách từ điểm \(M\) đến mặt phẳng \((P)\), ta sử dụng các phương pháp sau đây:

Phương pháp 1

+ Tìm mặt phẳng \((Q)\) chứa \(M\) và vuông góc với mặt phẳng \((P)\) theo giao tuyến \(∆.\)

+ Từ \(M\) hạ \(MH\) vuông góc với \(∆\) (\(H ∈ Δ\)).

+ Khi đó \(d(M,(P)) = MH.\)

khoảng cách từ một điểm tới một mặt phẳng

Ví dụ 1: Cho hình chóp đều \(S.ABC\), đáy \(ABC\) có cạnh bằng \(a\), mặt bên tạo với đáy một góc \(α\). Tính \(d(A,(SBC))\) theo \(a\) và \(α.\)

khoảng cách từ một điểm tới một mặt phẳng

Gọi \(I\) là trung điểm của \(BC.\)

+ Ta có: \(\left. \begin{array}{l}

SI \bot BC\\

AI \bot BC

\end{array} \right\} \Rightarrow BC \bot (SAI)\) và \(\widehat {SIA} = \alpha .\)

+ Kẻ \(AH \bot SI{\rm{ (H}} \in {\rm{SI)}}\) mà \(SI = (SAI) \cap (SBC)\) nên \(AH \bot (SBC)\). Do đó, \(d(A,(SBC)) = AH.\)

+ Mặt khác, xét tam giác vuông \(AHI\) có: \(AH = AI.\sin \alpha = \frac{{a\sqrt 3 }}{2}.\sin \alpha .\)

Vậy: \(d(A,(SBC)) = AH = \frac{{a\sqrt 3 }}{2}.\sin \alpha .\)

Ví dụ 2: Cho hình chóp \(S.ABCD\) đáy \(ABCD\) là hình vuông cạnh \(a\), \(SA \bot (ABCD)\), \(SA=2a.\)

a) Tính \(d(A,(SBC))\).

b) Tính \(d(A,(SBD))\).

khoảng cách từ một điểm tới một mặt phẳng

a) Kẻ \(AH \bot SB{\rm{ (H}} \in {\rm{SB) (1)}}.\)

Ta có: \(SA \bot (ABCD) \Rightarrow SA \bot BC{\rm{ (*)}}\) và \(AB \bot BC{\rm{ (gt) (**)}}\). Từ \((*)\) và \((**)\) suy ra: \(BC \bot (SAB) \Rightarrow {\rm{BC}} \bot {\rm{AH (2)}}.\)

Từ \((1)\) và \((2)\) ta có: \(AH \bot (SBC)\) hay \(d(A,(SBC)) = AH.\)

+ Mặt khác, xét tam giác vuông \(SAB\) có: \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{S{A^2}}} = \frac{5}{{4{a^2}}}\) \( \Rightarrow AH = \frac{{2a}}{{\sqrt 5 }}.\)

Vậy \(d(A,(SBC)) = \frac{{2a}}{{\sqrt 5 }}.\)

b) Gọi \(O = AC \cap BD.\)

Kẻ \(AK \bot SB{\rm{ (K}} \in {\rm{SO) (1)}}.\)

Ta có: \(SA \bot (ABCD) \Rightarrow SA \bot BD{\rm{ (*)}}\) và \(AC \bot BD{\rm{ (gt) (**)}}\). Từ \((*)\) và \((**)\) suy ra: \(BD \bot (SAC) \Rightarrow {\rm{BC}} \bot {\rm{AK (2)}}.\)

Từ \((1)\) và \((2)\) ta có: \(AK \bot (SBD)\) hay \(d(A,(SBD)) = AK.\)

+ Mặt khác, xét tam giác vuông \(SAO\) có: \(\frac{1}{{A{K^2}}} = \frac{1}{{A{O^2}}} + \frac{1}{{S{A^2}}} = \frac{9}{{4{a^2}}}\) \( \Rightarrow AK = \frac{{2a}}{3}.\)

Vậy \(d(A,(SBD)) = \frac{{2a}}{3}.\)

Ví dụ 3: Cho hình chóp \(S.ABCD\) đáy \(ABCD\) là hình vuông cạnh \(a\), tam giác \(SAB\) đều, \((SAB) \bot (ABCD)\). Gọi \(I, F\) lần lượt là trung điểm của \(AB\) và \(AD\). Tính \(d(I,(SFC)).\)

khoảng cách từ một điểm tới một mặt phẳng

Gọi \(K = FC \cap ID.\)

+ Kẻ \(IH \bot SK{\rm{ (H}} \in {\rm{K) (1)}}.\)

+ Ta có:

\(\left. \begin{array}{l}

(SAB) \bot (ABCD)\\

(SAB) \cap (ABCD) = AB\\

SI \subset (SAB)\\

SI \bot AB

\end{array} \right\}\) \( \Rightarrow SI \bot (ABCD).\)

\( \Rightarrow SI \bot FC{\rm{ (*)}}.\)

+ Mặt khác, xét hai tam giác vuông \(AID\) và \(DFC\) có: \(AI = DF\), \(AD = DC.\)

Suy ra \(\Delta AID = \Delta DFC\) \( \Rightarrow \widehat {AID} = \widehat {DFC},\widehat {ADI} = \widehat {DCF}.\)

Mà \(\widehat {AID} + \widehat {ADI} = {90^0}\) \( \Rightarrow \widehat {DFC} + \widehat {ADI} = {90^0}.\)

Hay \(FC \bot ID\) \((**).\)

+ Từ \((*)\) và \((**)\) ta có: \(FC \bot (SID) \Rightarrow IH \bot FC\) \((2)\). Từ \((1)\) và \((2)\) suy ra: \(IH \bot (SFC)\) hay \(d(I,(SFC)) = IH.\)

+ Ta có:

\(SI = \frac{{a\sqrt 3 }}{2},ID = \frac{{a\sqrt 5 }}{2},\) \(\frac{1}{{D{K^2}}} = \frac{1}{{D{C^2}}} + \frac{1}{{D{F^2}}} = \frac{5}{{{a^2}}}\) \( \Rightarrow DK = \frac{{a\sqrt 5 }}{5}\) \( \Rightarrow IK = ID – DK = \frac{{3a\sqrt 5 }}{{10}}.\)

Do đó \(\frac{1}{{I{H^2}}} = \frac{1}{{S{I^2}}} + \frac{1}{{I{K^2}}} = \frac{{32}}{{9{a^2}}}\) \( \Rightarrow IH = \frac{{3a\sqrt 2 }}{8}.\)

Vậy \(d(I,(SFC)) = \frac{{3a\sqrt 2 }}{8}.\)

Phương pháp 2

+ Qua \(M\), kẻ \(∆ // (P)\). Ta có: \(d(M,(P)) = d(∆,(P)).\)

+ Chọn \(N \in \Delta \). Lúc đó \({\rm{d}}\left( {{\rm{M}},\left( {\rm{P}} \right)} \right) = {\rm{d}}(\Delta ,{\rm{(P)) = d}}\left( {N,\left( {\rm{P}} \right)} \right)\).

khoảng cách từ một điểm tới một mặt phẳng

Ví dụ 4: Cho lăng trụ \(ABCD.A’B’C’D’\), \(ABCD\) là hình chữ nhật, \(AB = a,AD = a\sqrt 3\). Hình chiếu vuông góc của \(A’\) trên \((ABCD)\) trùng với giao điểm của \(AC\) và \(BD\). Tính \(d(B’,(A’BD)).\)

khoảng cách từ một điểm tới một mặt phẳng

+ Gọi \(O\) là giao điểm của \(AC\) và \(BD.\) Vì \(B’C//A’D\) nên \(B’C//(A’BD)\). Do đó: \(d(B’,(A’BD)) = d(B’C,(A’BD))\) \( = d(C,(A’BD)).\)

+ Trong mặt phẳng \((ABCD)\) kẻ \(CH \bot BD,{\rm{ (H}} \in {\rm{BD) (1)}}\). Mặt khác \(A’O \bot (ABCD)\) \( \Rightarrow A’O \bot CH{\rm{ (2)}}.\)

Từ \((1)\) và \((2)\) suy ra: \(CH \bot (A’BD)\) \( \Rightarrow d(B’,(A’BD)) = CH.\)

+ Xét tam giác vuông \(BCD\) có: \(\frac{1}{{C{H^2}}} = \frac{1}{{B{C^2}}} + \frac{1}{{C{D^2}}} = \frac{4}{{3{a^2}}}\) \( \Rightarrow CH = \frac{{a\sqrt 3 }}{4}.\)

Vậy: \(d(B’,(A’BD)) = CH = \frac{{a\sqrt 3 }}{4}.\)

Ví dụ 5: Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(\widehat {ABC} = {30^0}\), \(\Delta SBC\) là tam giác đều cạnh \(a\), \((SBC) \bot (ABC)\). Tính \(d(C,(SAB))\).

khoảng cách từ một điểm tới một mặt phẳng

+ Trong mặt phẳng \((ABC)\) vẽ hình chữ nhật \(ABDC\). Gọi \(M, I, J\) lần lượt là trung điểm của \(BC, CD\) và \(AB\). Lúc đó, \(CD // (SAB)\) hay: \(d(C,(SAB)) = d(CD,(SAB))\) \( = d(I,(SAB)).\)

+ Trong mặt phẳng \((SIJ)\) kẻ \(IH \bot SJ,{\rm{ (H}} \in {\rm{SJ) (1)}}.\)

Mặt khác, ta có: \(\left. \begin{array}{l}

IJ \bot AB\\

SM \bot (ABC) \Rightarrow AB \bot SM

\end{array} \right\}\) \( \Rightarrow AB \bot (SIJ) \Rightarrow AB \bot IH{\rm{ (2)}}.\)

Từ \((1)\) và \((2)\) suy ra: \(IH \bot (SAB)\) hay \(d(C,(SAB)) = IH.\)

+ Xét tam giác \(SIJ\) có: \({S_{SIJ}} = \frac{1}{2}IH.SJ = \frac{1}{2}SM.IJ\) \( \Rightarrow IH = \frac{{SM.IJ}}{{SJ}}.\)

Với: \(IJ = AC = BC.\sin {30^0} = \frac{a}{2}\), \(SM = \frac{{a\sqrt 3 }}{2}\), \(SJ = \sqrt {S{M^2} + M{J^2}} = \frac{{a\sqrt {13} }}{4}\).

Do đó: \(IH = \frac{{SM.IJ}}{{SJ}} = \frac{{a\sqrt {39} }}{{13}}.\)

Vậy \(d(C,(SAB)) = \frac{{a\sqrt {39} }}{{13}}.\)

Phương pháp 3

+ Nếu \(MN \cap (P) = I\). Ta có: \(\frac{{{\rm{d}}\left( {{\rm{M}},\left( {\rm{P}} \right)} \right)}}{{{\rm{d}}\left( {N,\left( {\rm{P}} \right)} \right)}} = \frac{{MI}}{{NI}}\).

+ Tính \({\rm{d}}\left( {N,\left( {\rm{P}} \right)} \right)\) và \(\frac{{MI}}{{NI}}\).

+ \({\rm{d}}\left( {{\rm{M}},\left( {\rm{P}} \right)} \right) = \frac{{MI}}{{NI}}.{\rm{d}}\left( {N,\left( {\rm{P}} \right)} \right)\).

Chú ý: Điểm \(N\) ở đây ta phải chọn sao cho tìm khoảng cách từ \(N\) đến mặt phẳng \((P)\) dễ hơn tìm khoảng cách từ \(M\) đến mặt phẳng \((P).\)

khoảng cách từ một điểm tới một mặt phẳng

Ví dụ 6: Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\), \(AB = AD = a\), \(CD = 2a\), \(SD \bot (ABCD)\), \(SD = a.\)

a) Tính \(d(D,(SBC)).\)

b) Tính \(d(A,(SBC)).\)

khoảng cách từ một điểm tới một mặt phẳng

Gọi \(M\) là trung điểm của \(CD\), \(E\) là giao điểm của hai đường thẳng \(AD\) và \(BC.\)

a) Trong mặt phẳng \((SBD)\) kẻ \(DH \bot SB,{\rm{ (H}} \in {\rm{SB) (1)}}.\)

+ Vì \(BM = AD = \frac{1}{2}CD \Rightarrow \) Tam giác \(BCD\) vuông tại \(B\) hay \(BC \bot BD{\rm{ (*)}}\). Mặt khác, vì \(SD \bot (ABCD) \Rightarrow SD \bot BC{\rm{ (**)}}.\)

Từ \((*)\) và \((**)\) ta có:

\(BC \bot (SBD) \Rightarrow BC \bot DH{\rm{ (2)}}.\)

Từ \((1)\) và \((2)\) suy ra: \(DH \bot (SBC)\) hay \(d(D,(SBC)) = DH.\)

+ Xét tam giác vuông \(SBD\) có: \(\frac{1}{{D{H^2}}} = \frac{1}{{S{D^2}}} + \frac{1}{{B{D^2}}} = \frac{3}{{2{a^2}}}\) \( \Rightarrow DH = \frac{{2a\sqrt 3 }}{3}.\)

Vậy \(d(D,(SBC)) = \frac{{2a\sqrt 3 }}{3}.\)

b) Ta có: \(\frac{{d(A,(SBC))}}{{d(D,(SBC))}} = \frac{{AE}}{{DE}} = \frac{{AB}}{{CD}} = \frac{1}{2}\) \( \Rightarrow d(A,(SBC)) = \frac{1}{2}d(d,(SBC))\) \( = \frac{{a\sqrt 3 }}{3}.\)

Vậy \(d(A,(SBC)) = \frac{{a\sqrt 3 }}{3}.\)

Ví dụ 7: Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(BA = 3a\), \(BC = 4a\), \((SBC) \bot (ABC)\), \(SB = 2a\sqrt 3 ,\widehat {SBC} = {30^0}\). Tính \(d(B,(SAC))\).

khoảng cách từ một điểm tới một mặt phẳng

+ Trong mặt phẳng \((SBC)\) kẻ \(SM \bot BC{\rm{ (M}} \in {\rm{BC)}}\); trong mặt phẳng \((ABC)\) kẻ \(MN \bot AC{\rm{ (N}} \in A{\rm{C)}}\); trong mặt phẳng \((SMN)\) kẻ \(MH \bot SN{\rm{ (N}} \in SN{\rm{)}}\). Suy ra, \(MH \bot (SAC)\) \( \Rightarrow d(M,(SAC)) = MH.\)

+ Ta có: \(SM = SB.\sin {30^0} = a\sqrt 3 .\)

\(BM = SB.\cos {30^0} = 3a\) \( \Rightarrow CM = a.\)

\(MN = \frac{{AB.CM}}{{AC}} = \frac{{3a}}{5}\). Xét tam giác vuông \(SMN\) có: \(\frac{1}{{M{H^2}}} = \frac{1}{{S{M^2}}} + \frac{1}{{M{N^2}}} = \frac{{28}}{{9{a^2}}}\) \( \Rightarrow MH = \frac{{3a}}{{\sqrt {28} }}\) \( \Rightarrow d(M,(SAC)) = \frac{{3a}}{{\sqrt {28} }}.\)

+ Mặt khác, ta có:

\(\frac{{d(B,(SAC))}}{{d(M,(SAC))}} = \frac{{BC}}{{MC}} = 4\) \( \Rightarrow d(B,(SAC))\) \( = 4.d(M,(SAC)) = \frac{{6a}}{{\sqrt 7 }}.\)

Vậy \(d(B,(SAC)) = \frac{{6a}}{{\sqrt 7 }}.\)

Bạn đang khám phá nội dung khoảng cách từ một điểm tới một mặt phẳng trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng toán. Được biên soạn chuyên sâu và bám sát chặt chẽ chương trình sách giáo khoa hiện hành, bộ bài tập toán trung học phổ thông này cam kết tối ưu hóa toàn diện quá trình ôn luyện, củng cố kiến thức Toán lớp 11 cho học sinh THPT, thông qua phương pháp tiếp cận trực quan và mang lại hiệu quả học tập vượt trội, tạo nền tảng vững chắc cho các kỳ thi quan trọng và chương trình đại học.
Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên MonToan.com.vn bằng cách gửi về:
Facebook: MÔN TOÁN
Email: montoanmath@gmail.com

đánh giá tài liệu

5/5
( đánh giá)
5 sao
100%
4 sao
0%
3 sao
0%
2 sao
0%
1 sao
0%