1. Môn Toán
  2. Đề số 39 - Đề thi vào lớp 10 môn Toán

Đề số 39 - Đề thi vào lớp 10 môn Toán

Đề số 39 - Đề thi vào lớp 10 môn Toán

Chào mừng các em học sinh đến với Đề số 39 - Đề thi vào lớp 10 môn Toán tại montoan.com.vn. Đây là một đề thi thử quan trọng, được thiết kế bám sát cấu trúc đề thi tuyển sinh vào lớp 10 của các tỉnh thành trên cả nước.

Đề thi này không chỉ giúp các em làm quen với dạng bài, mà còn rèn luyện kỹ năng giải quyết vấn đề và quản lý thời gian hiệu quả.

Hãy cùng montoan.com.vn chinh phục kỳ thi tuyển sinh sắp tới!

Đề thi vào lớp 10 môn Toán - Đề số 39 có đáp án và lời giải chi tiết

Đề bài

Câu I: (2,0 điểm)

1) Giải phương trình: \({x^2} + 8x + 7 = 0\)

2) Giải hệ phương trình: \(\left\{ \begin{array}{l}2x - y = - 6\\5x + y = 20\end{array} \right.\)

Câu II: (2,0 điểm)

Cho biểu thức \(A = \dfrac{{\sqrt x + 1}}{{x + 4\sqrt x + 4}}:\left( {\dfrac{x}{{x + 2\sqrt x }} + \dfrac{x}{{\sqrt x + 2}}} \right),\) với \(x > 0\)

1. Rút gọn biểu thức A.

2. Tìm tất cả các giá trị của x để \(A \ge \dfrac{1}{{3\sqrt x }}\)

Câu III: (2,0 điểm)

1. Cho đường thẳng \(\left( d \right):\,\,y = ax + b\) . Tìm \(a,b\) để đường thẳng (d) song song với đường thẳng \(\left( {d'} \right):\,\,y = 2x + 3\) và đi qua điểm \(A\left( {1; - 1} \right)\)

2. Cho phương trình \({x^2} - \left( {m - 2} \right)x - 3 = 0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt \({x_1};{x_2}\) với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:

\(\sqrt {x_1^2 + 2018} - {x_1} = \sqrt {x_2^2 + 2018} + {x_2}\)

Bài IV: (3,0 điểm)

Cho đường tròn tâm \(\left( O \right)\), đường kính \(AB = 2R\). Gọi \({d_1};{d_2}\) lần lượt là các tiếp tuyến của đường tròn \(\left( O \right)\) tại A và B, I là trung điểm của đoạn thẳng OA, E là điểm thay đổi trên đường tròn \(\left( O \right)\) sao cho E không trùng với A và B. Đường thẳng d đi qua E và vuông góc với đường thẳng EI cắt \({d_1};{d_2}\) lần lượt tại M, N.

1. Chứng minh AMEI là tứ giác nội tiếp.

2. Chứng minh \(IB.NE = 3IE.NB\)

3. Khi điểm E thay đổi, chứng minh tích \(AM.BN\) có giá trị không đổi và tìm giá trị nhỏ nhất của diện tích tam giác MNI theo R.

Câu V: (1,0 điểm)

Cho \(a,b,c\) là các số thực dương thỏa mãn: \(a + b + c = 1\) . Chứng minh \(\dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{abc}} \ge 30.\)

Lời giải chi tiết

Câu I.

1) Giải phương trình: \({x^2} + 8x + 7 = 0\)

Ta có: \(a - b + c = 1 - 8 + 7 = 0\) nên phương trình đã cho luôn có một nghiệm là \(x = - 1\) và nghiệm còn lại là: \(x = - \dfrac{c}{a} = - 7\)

Vậy tập nghiệm của phương trình là \(S = \left\{ { - 1; - 7} \right\}\).

2) Giải hệ phương trình: \(\left\{ \begin{array}{l}2x - y = - 6\\5x + y = 20\end{array} \right.\)

\(\left\{ \begin{array}{l}2x - y = - 6\\5x + y = 20\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}7x = 14\\y = 20 - 5x\end{array} \right.\)

\(\Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 20 - 5.2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 10\end{array} \right.\)

Vậy hệ phương trình đã cho có nghiệm là: \(\left( {x;y} \right) = \left( {2;10} \right)\)

Câu II.

Cho biểu thức \(A = \dfrac{{\sqrt x + 1}}{{x + 4\sqrt x + 4}}:\left( {\dfrac{x}{{x + 2\sqrt x }} + \dfrac{x}{{\sqrt x + 2}}} \right),\) với \(x > 0\)

1. Rút gọn biểu thức A.

\(\begin{array}{l}A = \dfrac{{\sqrt x + 1}}{{x + 4\sqrt x + 4}}:\left( {\dfrac{x}{{x + 2\sqrt x }} + \dfrac{x}{{\sqrt x + 2}}} \right)\\ = \dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x + 2} \right)}^2}}}:\left( {\dfrac{x}{{\sqrt x \left( {\sqrt x + 2} \right)}} + \dfrac{x}{{\sqrt x + 2}}} \right)\\ = \dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x + 2} \right)}^2}}}:\left( {\dfrac{{\sqrt x }}{{\sqrt x + 2}} + \dfrac{x}{{\sqrt x + 2}}} \right)\\ = \dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x + 2} \right)}^2}}}.\dfrac{{\sqrt x + 2}}{{\sqrt x \left( {\sqrt x + 1} \right)}}\\ = \dfrac{1}{{\sqrt x \left( {\sqrt x + 2} \right)}}\end{array}\)

Vậy với \(x > 0\) thì \(\)

2. Tìm tất cả các giá trị của x để \(A \ge \dfrac{1}{{3\sqrt x }}\)

\(\begin{array}{l}A \ge \dfrac{1}{{3\sqrt x }} \Leftrightarrow \dfrac{1}{{\sqrt x \left( {\sqrt x + 2} \right)}} \ge \dfrac{1}{{3\sqrt x }}\\ \Leftrightarrow \dfrac{{3 - \left( {\sqrt x + 2} \right)}}{{\sqrt x \left( {\sqrt x + 2} \right)}} \ge 0\\ \Leftrightarrow \dfrac{{1 - \sqrt x }}{{\sqrt x \left( {\sqrt x + 2} \right)}} \ge 0\end{array}\)

Với \(x > 0\) ta có: \(\sqrt x \left( {\sqrt x + 2} \right) > 0\) khi đó \(\dfrac{{1 - \sqrt x }}{{\sqrt x \left( {\sqrt x + 2} \right)}} \ge 0 \) \(\Leftrightarrow 1 - \sqrt x \ge 0 \Leftrightarrow x \le 1\)

Kết hợp với điều kiện ta được: \(0 < x \le 1\) thỏa mãn yêu cầu bài toán.

Câu III.

1. Cho đường thẳng \(\left( d \right):\,\,y = ax + b\) . Tìm \(a,b\) để đường thẳng (d) song song với đường thẳng \(\left( {d'} \right):\,\,y = 2x + 3\) và đi qua điểm \(A\left( {1; - 1} \right)\)

Đường thẳng (d) song song với đường thẳng (d’) khi và chỉ khi: \(\left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b \ne 3\end{array} \right.\)

Khi đó (d) trở thành: \(y = 2x + b\left( {b \ne 3} \right)\)

Đường thẳng (d’) đi qua điểm \(A\left( {1; - 1} \right)\) nên ta có:

\( - 1 = 2.1 + b \Leftrightarrow b = - 3\left( {tm} \right)\)

Vậy đường thẳng (d) cần tìm là: \(y = 2x - 3\)

2. Cho phương trình \({x^2} - \left( {m - 2} \right)x - 3 = 0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt \({x_1};{x_2}\) với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:

\(\sqrt {x_1^2 + 2018} - {x_1} = \sqrt {x_2^2 + 2018} + {x_2}\)

Xét biệt thức \(\Delta = {\left( {m - 2} \right)^2} + 12 \ge 12 > 0,\forall m\)

Vậy phương trình \({x^2} - \left( {m - 2} \right)x - 3 = 0\) luôn có hai nghiệm phân biệt \({x_1};{x_2}\) với mọi m. Giả sử \({x_1} > {x_2}\)

Theo hệ thức Viet ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m - 2\\{x_1}{x_2} = - 3\end{array} \right.\)

Theo đề ra ta có:

 \(\begin{array}{l}\sqrt {x_1^2 + 2018} - {x_1} = \sqrt {x_2^2 + 2018} + {x_2}\\ \Leftrightarrow \sqrt {x_1^2 + 2018} - \sqrt {x_2^2 + 2018} = {x_1} + {x_2}\\ \Leftrightarrow x_1^2 + 2018 + x_2^2 + 2018 - 2\sqrt {\left( {x_1^2 + 2018} \right).\left( {x_2^2 + 2018} \right)} = x_1^2 + x_2^2 + 2{x_1}{x_2}\\\,\,\left( {Do\,\,{x_1} - {x_2} > 0} \right)\\ \Leftrightarrow 4036 - 2\sqrt {\left( {x_1^2 + 2018} \right).\left( {x_2^2 + 2018} \right)} = 2{x_1}{x_2}\\ \Leftrightarrow \sqrt {\left( {x_1^2 + 2018} \right).\left( {x_2^2 + 2018} \right)} = 2018 - {x_1}{x_2}\\ \Leftrightarrow \left( {x_1^2 + 2018} \right).\left( {x_2^2 + 2018} \right) = {2018^2} - 4036{x_1}{x_2} + x_1^2x_2^2\\ \Leftrightarrow x_1^2x_2^2 + 2018\left( {x_1^2 + x_2^2} \right) + {2018^2} = {2018^2} - 4036{x_1}{x_2} + x_1^2x_2^2\\ \Leftrightarrow \left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right] = - 2{x_1}{x_2}\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} = 0\\ \Leftrightarrow {\left( {m - 2} \right)^2} = 0\\ \Leftrightarrow m = 2\end{array}\)

Vậy m = 2 thỏa mãn yêu cầu bài toán.

Bài IV.

Cho đường tròn tâm \(\left( O \right)\), đường kính \(AB = 2R\). Gọi \({d_1};{d_2}\) lần lượt là các tiếp tuyến của đường tròn \(\left( O \right)\) tại A và B, I là trung điểm của đoạn thẳng OA, E là điểm thay đổi trên đường tròn \(\left( O \right)\) sao cho E không trùng với A và B. Đường thẳng d đi qua E và vuông góc với đường thẳng EI cắt \({d_1};{d_2}\) lần lượt tại M, N.

Đề số 39 - Đề thi vào lớp 10 môn Toán 1

1. Chứng minh AMEI là tứ giác nội tiếp.

Ta có: MA là tiếp tuyến của (O) tại A nên \(\angle IAM = {90^0}\)

Xét tứ giác \(AMEI\) có \(\angle IAM + \angle IEM = {90^0} + {90^0} = {180^0}\)

\( \Rightarrow \) Tứ giác \(AMEI\) là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800)

2. Chứng minh \(IB.NE = 3IE.NB\)

Ta có \(\angle IEA + \angle IEB = \angle AEB = {90^0}\) (góc nội tiếp chắn nửa đường tròn);

\(\angle NEB + \angle IEB = \angle NEI = {90^0}\,\,\left( {gt} \right)\);

\( \Rightarrow \angle IEA = \angle NEB\)

Xét \(\Delta IEA\) và \(\Delta NEB\) có:

\(\angle IEA = \angle NEB\,\,\left( {cmt} \right)\);

\(\angle IAE = \angle BAE = \angle NBE\) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BE);

\( \Rightarrow \Delta IEA \sim \Delta NEB\,\,\left( {g.g} \right) \)

\(\Rightarrow \dfrac{{IE}}{{IA}} = \dfrac{{NE}}{{NB}}\)

\(\Rightarrow IA.NE = IE.NB\)

\(\Rightarrow 3IA.NE = 3IE.NB\)

Do I là trung điểm của OA \( \Rightarrow IA = \dfrac{1}{2}OA = \dfrac{1}{2}.\dfrac{1}{2}AB = \dfrac{1}{4}AB \)

\(\Rightarrow IA = \dfrac{1}{3}IB\) hay \(IB = 3IA\).

\( \Rightarrow IB.NE = 3IE.NB\,\,\left( {dpcm} \right)\).

3. Khi điểm E thay đổi chứng minh tích \(AM.BN\) có giá trị không đổi và tìm giá trị nhỏ nhất của diện tích tam giác MNI theo R.

+) Chứng minh tích \(AM.BN\) có giá trị không đổi

Xét tứ giác \(BNEI\) có \(\angle IBN + \angle IEN = {90^0} + {90^0} = {180^0}\) \( \Rightarrow \) Tứ giác \(BNEI\) là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800)

\( \Rightarrow \angle NEB = \angle NIB\) (hai góc nội tiếp cùng chắn cung NB)

Ta có \(\angle AMI = \angle AEI\) (hai góc nội tiếp cùng chắn cung AI) ;

Mà \(\angle AEI = \angle NEB\,\,\left( {cmt} \right)\)

\( \Rightarrow \angle AMI = \angle NIB\).

Xét \(\Delta AMI\) và \(\Delta BIN\) có:

\(\begin{array}{l}\angle AMI = \angle NIB\,\,\left( {cmt} \right);\\\angle MAI = \angle IBN = {90^0}\,\,\left( {gt} \right);\\ \Rightarrow \Delta AMI \sim \Delta BIN\,\,\left( {g.g} \right)\\ \Rightarrow \dfrac{{AM}}{{BI}} = \dfrac{{AI}}{{BN}}\\ \Rightarrow AM.BN = AI.BI\end{array}\)

Ta có \(AI = \dfrac{1}{4}AB = \dfrac{1}{4}.2R = \dfrac{R}{2};\)

\(BI = \dfrac{3}{4}AB = \dfrac{3}{4}.2R = \dfrac{{3R}}{2}\) 

\( \Rightarrow AM.BN = \dfrac{R}{2}.\dfrac{{3R}}{2} = \dfrac{{3{R^2}}}{4} = const\).

+) Tìm giá trị nhỏ nhất của diện tích tam giác MNI theo R.

Tứ giác BNEI là tứ giác nội tiếp (cmt) \( \Rightarrow \angle ENI = \angle EBI\) (hai góc nội tiếp cùng chắn cung EI)

Do tứ giác \(AMEI\) nội tiếp (cmt) \( \Rightarrow \angle IME = \angle IAE\) (hai góc nội tiếp cùng chắn cung IE)

\( \Rightarrow \angle ENI = \angle IME = \angle EBI + \angle IAE = {90^0}\) (\(\Delta ABE\) vuông tại E)

\( \Rightarrow \angle MIN = {90^0} \Rightarrow \Delta IMN\) vuông tại I \( \Rightarrow {S_{IMN}} = \dfrac{1}{2}IM.IN\)

Đặt \(\angle AIM = \alpha \) \( \Rightarrow \angle BNI = \alpha \,\,\left( {{0^0} < \alpha < {{90}^0}} \right)\) \(\left( {Do\,\,\Delta AMI \sim \Delta BIN} \right)\).

Xét tam giác vuông AIM có \(\cos \angle AIM = \cos \alpha = \dfrac{{AI}}{{MI}}\)

\(\Rightarrow MI = \dfrac{{AI}}{{\cos \alpha }} = \dfrac{{\dfrac{R}{2}}}{{\cos \alpha }} = \dfrac{R}{{2\cos \alpha }}\)

Xét tam giác vuông BIN có : \(\sin \angle BNI = \sin \alpha = \dfrac{{BI}}{{IN}}\) \( \Rightarrow IN = \dfrac{{BI}}{{\sin \alpha }} = \dfrac{{\dfrac{{3R}}{2}}}{{\sin \alpha }} = \dfrac{{3R}}{{2\sin \alpha }}\)

\( \Rightarrow {S_{IMN}} = \dfrac{1}{2}IM.IN = \dfrac{1}{2}.\dfrac{R}{{2\cos \alpha }}.\dfrac{{3R}}{{2\sin \alpha }} = \dfrac{{3{R^2}}}{{8\sin \alpha \cos \alpha }}\)

Do \({0^0} < \alpha < {90^0}\) \( \Rightarrow \sin \alpha > 0,\,\,\cos \alpha > 0\) và \(\cos \alpha = \sqrt {1 - {{\sin }^2}\alpha } \).

\(\begin{array}{l} \Rightarrow \sin \alpha .\cos \alpha = \sin \alpha .\sqrt {1 - {{\sin }^2}\alpha } \mathop \le \limits^{Cauchy} \dfrac{{{{\sin }^2}\alpha + 1 - {{\sin }^2}\alpha }}{2} = \dfrac{1}{2}\\ \Rightarrow {S_{IMN}} \ge \dfrac{{3{R^2}}}{{8.\dfrac{1}{2}}} = \dfrac{{3{R^2}}}{4}\end{array}\)

Dấu bằng xảy ra \( \Leftrightarrow \sin \alpha = \sqrt {1 - {{\sin }^2}\alpha }\)

\( \Leftrightarrow 2{\sin ^2}\alpha = 1 \)

\(\Leftrightarrow \sin \alpha = \dfrac{1}{{\sqrt 2 }} \Leftrightarrow \alpha = {45^0}\)

Vậy \({S_{IMN\,\,\min }} = \dfrac{{3{R^2}}}{4} \Leftrightarrow \angle AIM = {45^0}\)

Câu V.

Ta có:

\(\begin{array}{l}\dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{abc}} = \dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{9abc}} + \dfrac{8}{{9abc}}\\ \ge \dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{3{{\left( {bc + ac + ab} \right)}^2}}} + \dfrac{8}{{9\dfrac{{{{\left( {a + b + c} \right)}^3}}}{{27}}}}\\ \ge 2\sqrt {\dfrac{1}{{{a^2} + {b^2} + {c^2}}}.\dfrac{1}{{3{{\left( {bc + ac + ab} \right)}^2}}}} + 24\\ \ge 2\sqrt {\dfrac{1}{{3\dfrac{{{{\left( {{a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ac} \right)}^2}}}{{27}}}}} + 24 = 30\end{array}\)

Bạn đang khám phá nội dung Đề số 39 - Đề thi vào lớp 10 môn Toán trong chuyên mục bài tập toán 9 trên nền tảng tài liệu toán. Được biên soạn chuyên sâu và bám sát chương trình sách giáo khoa hiện hành, bộ bài tập toán trung học cơ sở này cam kết tối ưu hóa toàn diện quá trình ôn luyện, củng cố kiến thức Toán lớp 9 cho học sinh, đặc biệt là chuẩn bị cho các kỳ thi quan trọng, thông qua phương pháp tiếp cận trực quan và mang lại hiệu quả học tập vượt trội.
Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên MonToan.com.vn bằng cách gửi về:
Facebook: MÔN TOÁN
Email: montoanmath@gmail.com

Bài viết liên quan

Đề số 39 - Đề thi vào lớp 10 môn Toán: Phân tích chi tiết và hướng dẫn giải

Đề số 39 là một trong những đề thi thử được đánh giá cao về độ khó và tính bao quát kiến thức. Đề thi này bao gồm các dạng bài tập thường gặp trong kỳ thi tuyển sinh lớp 10, như đại số, hình học, và bài toán thực tế. Việc nắm vững kiến thức cơ bản và kỹ năng giải quyết vấn đề là yếu tố then chốt để đạt kết quả tốt trong kỳ thi này.

Cấu trúc đề thi Đề số 39

Đề thi thường được chia thành các phần sau:

  • Phần I: Đại số (5-7 điểm): Bao gồm các bài toán về phương trình, hệ phương trình, bất phương trình, và các bài toán liên quan đến hàm số.
  • Phần II: Hình học (5-7 điểm): Bao gồm các bài toán về tam giác, tứ giác, đường tròn, và các bài toán liên quan đến diện tích, thể tích.
  • Phần III: Bài toán thực tế (2-3 điểm): Các bài toán ứng dụng kiến thức toán học vào giải quyết các vấn đề thực tế.

Phân tích các dạng bài tập thường gặp

Trong đề thi Đề số 39, các em có thể gặp các dạng bài tập sau:

  1. Giải phương trình bậc hai: Đây là một dạng bài tập cơ bản, nhưng đòi hỏi các em phải nắm vững các công thức và kỹ năng giải phương trình.
  2. Giải hệ phương trình: Các em cần thành thạo các phương pháp giải hệ phương trình, như phương pháp thế, phương pháp cộng đại số, và phương pháp đặt ẩn phụ.
  3. Chứng minh các đẳng thức hình học: Các em cần nắm vững các định lý và tính chất hình học để chứng minh các đẳng thức.
  4. Tính diện tích và thể tích: Các em cần áp dụng các công thức tính diện tích và thể tích để giải quyết các bài toán.
  5. Bài toán ứng dụng: Các em cần phân tích đề bài và tìm ra mối liên hệ giữa các yếu tố để giải quyết bài toán.

Hướng dẫn giải một số bài tập tiêu biểu

Dưới đây là hướng dẫn giải một số bài tập tiêu biểu trong đề thi Đề số 39:

Bài tập 1: Giải phương trình x2 - 5x + 6 = 0

Phương trình có dạng ax2 + bx + c = 0, với a = 1, b = -5, c = 6. Ta tính delta (Δ) = b2 - 4ac = (-5)2 - 4 * 1 * 6 = 25 - 24 = 1. Vì Δ > 0, phương trình có hai nghiệm phân biệt:

x1 = (-b + √Δ) / 2a = (5 + 1) / 2 = 3

x2 = (-b - √Δ) / 2a = (5 - 1) / 2 = 2

Vậy phương trình có hai nghiệm là x1 = 3 và x2 = 2.

Bài tập 2: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Tính độ dài cạnh BC.

Áp dụng định lý Pitago trong tam giác vuông ABC, ta có:

BC2 = AB2 + AC2 = 32 + 42 = 9 + 16 = 25

Vậy BC = √25 = 5cm.

Lời khuyên khi làm bài thi

  • Đọc kỹ đề bài và xác định yêu cầu của bài toán.
  • Lập kế hoạch giải bài và phân bổ thời gian hợp lý.
  • Viết rõ ràng, mạch lạc, và trình bày các bước giải một cách logic.
  • Kiểm tra lại kết quả và đảm bảo tính chính xác.
  • Giữ bình tĩnh và tự tin trong quá trình làm bài.

Montoan.com.vn – Đồng hành cùng các em trên con đường chinh phục kiến thức

Montoan.com.vn cung cấp đầy đủ các tài liệu ôn tập, đề thi thử, và các khóa học online chất lượng cao, giúp các em tự tin bước vào kỳ thi tuyển sinh lớp 10. Hãy truy cập website của chúng tôi để khám phá thêm nhiều tài liệu hữu ích và nhận được sự hỗ trợ từ đội ngũ giáo viên giàu kinh nghiệm.

Chúc các em học tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Tài liệu, đề thi và đáp án Toán 9

Tài liệu, đề thi và đáp án Toán 9