1. Môn Toán
  2. Đề thi vào 10 môn Toán Thanh Hóa năm 2020

Đề thi vào 10 môn Toán Thanh Hóa năm 2020

Đề thi vào 10 môn Toán Thanh Hóa năm 2020: Tài liệu ôn luyện không thể thiếu

montoan.com.vn xin giới thiệu bộ đề thi tuyển sinh vào lớp 10 môn Toán tỉnh Thanh Hóa năm 2020 chính thức. Đây là tài liệu vô cùng quan trọng giúp các em học sinh làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự tin hơn trong kỳ thi sắp tới.

Bộ đề thi này được biên soạn dựa trên đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 THPT chuyên Lam Sơn và các trường THPT khác trên địa bàn tỉnh Thanh Hóa năm 2020.

Câu I: Cho biểu thức

Đề bài

    Câu I:

    Cho biểu thức \(P = \left( {\dfrac{{4\sqrt x }}{{\sqrt x + 2}} - \dfrac{{8x}}{{x - 4}}} \right):\left( {\dfrac{{\sqrt x + 2}}{{\sqrt x - 2}} + 3} \right)\) với \(x \ge 0,\,\,x \ne 1\) và \(x \ne 4\).

    1. Rút gọn biểu thức \(P\).

    2. Tìm các giá trị của \(x\) để \(P = - 4\).

    Câu II:

    1. Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(\left( d \right)\) có phương trình \(y = ax + b\). Tìm \(a,\,\,b\) để đường thẳng \(\left( d \right)\) cắt trục tung tại điểm có tung độ bằng 2 và đi qua điểm \(M\left( {2;3} \right)\).

    2. Giải hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 4\\2x - 3y = - 1\end{array} \right.\)

    Câu III:

    1. Giải phương trình \({x^2} + 5x + 4 = 0\).

    2. Cho phương trình \({x^2} + 5x + m - 2 = 0\) (\(m\) là tham số). Tìm các giá trị của \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\,{x_2}\) thỏa mãn hệ thức

    \(\dfrac{1}{{{{\left( {{x_1} - 1} \right)}^2}}} + \dfrac{1}{{{{\left( {{x_2} - 1} \right)}^2}}} = 1\)

    Câu IV:

    Cho tam giác nhọn \(ABC\) nội tiếp đường tròn \(\left( O \right)\). Các đường cao \(BD,\,\,CE\) (\(D\) thuộc \(AC\), \(E\) thuộc \(AB\)) của tam giác kéo dài lần lượt cắt đường tròn \(\left( O \right)\) tại các điểm \(M\) và \(N\) (\(M\) khác \(B\), \(N\) khác \(C\)).

    1. Chứng minh tứ giác \(BCDE\) nội tiếp được trong một đường tròn.

    2. Chứng minh \(MN\) song song với \(DE\).

    3. Khi đường tròn \(\left( O \right)\) và dây \(BC\) cố định, điểm \(A\) di động trên cung lớn \(BC\) sao cho tam giác \(ABC\) nhọn, chứng minh bán kính đường tròn ngoại tiếp tam giác \(ADE\) không đổi và tìm vị trí của điểm \(A\) để diện tích tam giác \(ADE\) đạt giá trị lớn nhất.

    Câu V:

    Cho ba số thực dương \(x,y,z\) thỏa mãn điều kiện \(x + y + z = xyz\). Tìm giá trị nhỏ nhất của biểu thức \(Q = \dfrac{{y + 2}}{{{x^2}}} + \dfrac{{z + 2}}{{{y^2}}} + \dfrac{{x + 2}}{{{z^2}}}\) 

    Lựa chọn câu để xem lời giải nhanh hơn
    • Đề bài
    • Lời giải chi tiết
    • Tải về

    Câu I:

    Cho biểu thức \(P = \left( {\dfrac{{4\sqrt x }}{{\sqrt x + 2}} - \dfrac{{8x}}{{x - 4}}} \right):\left( {\dfrac{{\sqrt x + 2}}{{\sqrt x - 2}} + 3} \right)\) với \(x \ge 0,\,\,x \ne 1\) và \(x \ne 4\).

    1. Rút gọn biểu thức \(P\).

    2. Tìm các giá trị của \(x\) để \(P = - 4\).

    Câu II:

    1. Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(\left( d \right)\) có phương trình \(y = ax + b\). Tìm \(a,\,\,b\) để đường thẳng \(\left( d \right)\) cắt trục tung tại điểm có tung độ bằng 2 và đi qua điểm \(M\left( {2;3} \right)\).

    2. Giải hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 4\\2x - 3y = - 1\end{array} \right.\)

    Câu III:

    1. Giải phương trình \({x^2} + 5x + 4 = 0\).

    2. Cho phương trình \({x^2} + 5x + m - 2 = 0\) (\(m\) là tham số). Tìm các giá trị của \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\,{x_2}\) thỏa mãn hệ thức

    \(\dfrac{1}{{{{\left( {{x_1} - 1} \right)}^2}}} + \dfrac{1}{{{{\left( {{x_2} - 1} \right)}^2}}} = 1\)

    Câu IV:

    Cho tam giác nhọn \(ABC\) nội tiếp đường tròn \(\left( O \right)\). Các đường cao \(BD,\,\,CE\) (\(D\) thuộc \(AC\), \(E\) thuộc \(AB\)) của tam giác kéo dài lần lượt cắt đường tròn \(\left( O \right)\) tại các điểm \(M\) và \(N\) (\(M\) khác \(B\), \(N\) khác \(C\)).

    1. Chứng minh tứ giác \(BCDE\) nội tiếp được trong một đường tròn.

    2. Chứng minh \(MN\) song song với \(DE\).

    3. Khi đường tròn \(\left( O \right)\) và dây \(BC\) cố định, điểm \(A\) di động trên cung lớn \(BC\) sao cho tam giác \(ABC\) nhọn, chứng minh bán kính đường tròn ngoại tiếp tam giác \(ADE\) không đổi và tìm vị trí của điểm \(A\) để diện tích tam giác \(ADE\) đạt giá trị lớn nhất.

    Câu V:

    Cho ba số thực dương \(x,y,z\) thỏa mãn điều kiện \(x + y + z = xyz\). Tìm giá trị nhỏ nhất của biểu thức \(Q = \dfrac{{y + 2}}{{{x^2}}} + \dfrac{{z + 2}}{{{y^2}}} + \dfrac{{x + 2}}{{{z^2}}}\) 

    Câu I (2,0 điểm)

    Cách giải:

    Cho biểu thức \(P = \left( {\dfrac{{4\sqrt x }}{{\sqrt x + 2}} - \dfrac{{8x}}{{x - 4}}} \right):\left( {\dfrac{{\sqrt x + 2}}{{\sqrt x - 2}} + 3} \right)\) với \(x \ge 0,\,\,x \ne 1\)\(x \ne 4\).

    1. Rút gọn biểu thức \(P\).

    Với \(x \ge 0,\,\,x \ne 1\) và \(x \ne 4\) ta có:

    \(\begin{array}{l}P = \left( {\dfrac{{4\sqrt x }}{{\sqrt x + 2}} - \dfrac{{8x}}{{x - 4}}} \right):\left( {\dfrac{{\sqrt x + 2}}{{\sqrt x - 2}} + 3} \right)\\P = \left( {\dfrac{{4\sqrt x }}{{\sqrt x + 2}} - \dfrac{{8x}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}} \right):\dfrac{{\sqrt x + 2 + 3\left( {\sqrt x - 2} \right)}}{{\sqrt x - 2}}\\P = \dfrac{{4\sqrt x \left( {\sqrt x - 2} \right) - 8x}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}:\dfrac{{\sqrt x + 2 + 3\sqrt x - 6}}{{\sqrt x - 2}}\\P = \dfrac{{4x - 8\sqrt x - 8x}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}:\dfrac{{4\sqrt x - 4}}{{\sqrt x - 2}}\\P = \dfrac{{ - 8\sqrt x - 4x}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}.\dfrac{{\sqrt x - 2}}{{4\left( {\sqrt x - 1} \right)}}\\P = \dfrac{{ - 4\sqrt x \left( {2 + \sqrt x } \right)}}{{\sqrt x + 2}}.\dfrac{1}{{4\left( {\sqrt x - 1} \right)}}\\P = \dfrac{{ - \sqrt x }}{{\sqrt x - 1}} = \dfrac{{\sqrt x }}{{1 - \sqrt x }}\end{array}\)

    2. Tìm các giá trị của \(x\) để \(P = - 4\).

    Ta có:

    \(\begin{array}{l}P = - 4 \Leftrightarrow \dfrac{{\sqrt x }}{{1 - \sqrt x }} = - 4\\ \Leftrightarrow \sqrt x = - 4\left( {1 - \sqrt x } \right)\\ \Leftrightarrow \sqrt x = - 4 + 4\sqrt x \\ \Leftrightarrow 3\sqrt x = 4\\ \Leftrightarrow \sqrt x = \dfrac{4}{3}\\ \Leftrightarrow x = \dfrac{{16}}{9}\,\,\left( {tm} \right)\end{array}\)

    Vậy để \(P = - 4\) thì \(x = \dfrac{{16}}{9}\).

    Câu II (2,0 điểm)

    Cách giải:

    1. Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(\left( d \right)\) có phương trình \(y = ax + b\). Tìm \(a,\,\,b\) để đường thẳng \(\left( d \right)\) cắt trục tung tại điểm có tung độ bằng 2 và đi qua điểm \(M\left( {2;3} \right)\).

    Đường thẳng \(\left( d \right)\) cắt trục tung tại điểm có tung độ bằng 2 nên đường thẳng \(\left( d \right)\) đi qua điểm \(\left( {0;2} \right)\). Thay tọa độ điểm \(\left( {0;2} \right)\) vào phương trình đường thẳng \(\left( d \right)\) ta có: \(2 = a.0 + b \Leftrightarrow b = 2\).

    Khi đó phương trình đường thẳng \(\left( d \right)\) có dạng \(y = ax + 2\).

    Đường thẳng \(\left( d \right)\) đi qua điểm \(M\left( {2;3} \right)\) nên thay tọa độ điểm \(M\) vào phương trình đường thẳng \(\left( d \right)\) ta có:

    \(3 = a.2 + 2 \Leftrightarrow 2a = 1 \Leftrightarrow a = \dfrac{1}{2}\).

    Vậy \(a = \dfrac{1}{2}\) và \(b = 2.\)

    2. Giải hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 4\\2x - 3y = - 1\end{array} \right.\)

    \(\left\{ \begin{array}{l}x + 3y = 4\\2x - 3y = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x = 3\\x + 3y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\1 + 3y = 4\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x = 1\\3y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right.\).

    Vậy nghiệm của hệ phương trình là \(\left( {x;y} \right) = \left( {1;1} \right)\).

    Câu III (2,0 điểm)

    Cách giải:

    1. Giải phương trình \({x^2} + 5x + 4 = 0\).

    Ta có:

    \(\begin{array}{l}\,\,\,\,\,\,{x^2} + 5x + 4 = 0\\ \Leftrightarrow {x^2} + x + 4x + 4 = 0\\ \Leftrightarrow \left( {{x^2} + x} \right) + \left( {4x + 4} \right) = 0\\ \Leftrightarrow x\left( {x + 1} \right) + 4\left( {x + 1} \right) = 0\\ \Leftrightarrow \left( {x + 1} \right)\left( {x + 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 1 = 0\\x + 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = - 4\end{array} \right.\end{array}\)

    Vậy tập nghiệm của phương trình là \(S = \left\{ { - 1; - 4} \right\}\).

    2. Cho phương trình \({x^2} + 5x + m - 2 = 0\) (\(m\) là tham số). Tìm các giá trị của \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\,{x_2}\) thỏa mãn hệ thức

    \(\dfrac{1}{{{{\left( {{x_1} - 1} \right)}^2}}} + \dfrac{1}{{{{\left( {{x_2} - 1} \right)}^2}}} = 1\)

    Để phương trình đã cho có 2 nghiệm phân biệt \({x_1} \ne 1,\,\,{x_2} \ne 1\) thì

    \(\left\{ \begin{array}{l}\Delta > 0\\1 + 5 + m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{5^2} - 4\left( {m - 2} \right) > 0\\m + 4 \ne 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}25 - 4m + 8 > 0\\m \ne - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4m < 33\\m \ne - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < \dfrac{{33}}{4}\\m \ne - 4\end{array} \right.\).

    Khi đó áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 5\\{x_1}{x_2} = m - 2\end{array} \right.\).

    Theo bài ra ta có:

    \(\begin{array}{l}\,\,\,\,\,\dfrac{1}{{{{\left( {{x_1} - 1} \right)}^2}}} + \dfrac{1}{{{{\left( {{x_2} - 1} \right)}^2}}} = 1 \Leftrightarrow \dfrac{{{{\left( {{x_1} - 1} \right)}^2} + {{\left( {{x_2} - 1} \right)}^2}}}{{{{\left( {{x_1} - 1} \right)}^2}.{{\left( {{x_2} - 1} \right)}^2}}} = 1\\ \Leftrightarrow x_1^2 - 2{x_1} + 1 + x_2^2 - 2{x_2} + 1 = {\left[ {{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1} \right]^2}\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} - 2\left( {{x_1} + {x_2}} \right) + 2 = {\left[ {{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1} \right]^2}\\ \Rightarrow 25 - 2\left( {m - 2} \right) - 2.\left( { - 5} \right) + 2 = {\left( {m - 2 + 5 + 1} \right)^2}\\ \Leftrightarrow 25 - 2m + 4 + 10 + 2 = {\left( {m + 4} \right)^2}\\ \Leftrightarrow - 2m + 41 = {m^2} + 8m + 16\\ \Leftrightarrow {m^2} + 10m - 25 = 0\,\,\left( * \right)\end{array}\)

    Ta có: \({\Delta _m} = {\left( { - 5} \right)^2} - \left( { - 25} \right) = 50 > 0\), do đó phương trình (*) có 2 nghiệm phân biệt

    \(\left[ \begin{array}{l}{m_1} = \dfrac{{ - 10 + \sqrt {50} }}{2} = - 5 + 5\sqrt 2 \\{m_1} = \dfrac{{ - 10 - \sqrt {50} }}{2} = - 5 - 5\sqrt 2 \end{array} \right.\,\,\left( {tm} \right)\).

    Vậy có hai giá trị của \(m\) thỏa mãn yêu cầu bài toán là \(m = - 5 \pm 5\sqrt 2 \). 

    Câu IV (3,0 điểm)

    Cách giải:

    Cho tam giác nhọn \(ABC\) nội tiếp đường tròn \(\left( O \right)\). Các đường cao \(BD,\,\,CE\) (\(D\) thuộc \(AC\), \(E\) thuộc \(AB\)) của tam giác kéo dài lần lượt cắt đường tròn \(\left( O \right)\) tại các điểm \(M\)\(N\) (\(M\) khác \(B\), \(N\) khác \(C\)).

    Đề thi vào 10 môn Toán Thanh Hóa năm 2020 1

    1. Chứng minh tứ giác \(BCDE\) nội tiếp được trong một đường tròn.

    Vì \(BD,\,\,CE\) là các đường cao của \(\Delta ABC\) nên \(BD \bot AC,\,\,CE \bot AB\).

    \( \Rightarrow \angle BDC = \angle BEC = {90^0}\).

    Suy ra tứ giác \(BCDE\) là tứ giác nội tiếp (Tứ giác có 2 đỉnh kề cùng nhìn một cạnh dưới các góc bằng nhau).

    2. Chứng minh \(MN\) song song với \(DE\).

    Vì \(BCDE\) là tứ giác nội tiếp (cmt) nên \(\angle BDE = \angle BCE\) (hai góc nội tiếp cùng chắn cung \(BE\)).

    Mà \(\angle BCE = \angle BCN = \angle BMN\) (hai góc nội tiếp cùng chắn cung \(BN\) của \(\left( O \right)\)).

    \( \Rightarrow \angle BDE = \angle BMN\,\). Mà 2 góc này ở vị trí hai góc đồng vị bằng nhau.

    Vậy \(MN\parallel DE\,\,\,\left( {dhnb} \right)\,\,\left( {dpcm} \right)\).

    3. Khi đường tròn \(\left( O \right)\) và dây \(BC\) cố định, điểm \(A\) di động trên cung lớn \(BC\) sao cho tam giác \(ABC\) nhọn, chứng minh bán kính đường tròn ngoại tiếp tam giác \(ADE\) không đổi và tìm vị trí của điểm \(A\) để diện tích tam giác \(ADE\) đạt giá trị lớn nhất.

    Gọi \(BD \cap CE = \left\{ H \right\}\).

    Xét tứ giác \(AEHD\) có \(\angle AEH + \angle ADH = {90^0} + {90^0} = {180^0}\).

    \( \Rightarrow AEHD\) là tứ giác nội tiếp (tứ giác có tổng hai góc đối bằng \({180^0}\)).

    Lại có \(\angle AEH = {90^0}\) nên là góc nội tiếp chắn nửa đường tròn, do đó tứ giác \(AEHD\) nội tiếp đường tròn đường kính \(AH\), tâm \(I\) là trung điểm của \(AH\).

    Suy ra đường tròn ngoại tiếp tam giác \(ADE\) là đường tròn \(\left( {I;\dfrac{{AH}}{2}} \right)\).

    Kẻ đường kính \(AF\) và gọi \(K\) là trung điểm của \(BC\).

    Vì \(\angle ABF,\,\,\angle ACF\) là các góc nội tiếp chắn nửa đường tròn \(\left( O \right)\) nên \(\angle ABF = \angle ACF = {90^0}\).

    Ta có: \(\left\{ \begin{array}{l}CF \bot AC\\BH \bot AC\,\,\left( {gt} \right)\end{array} \right. \Rightarrow CF\parallel BH\) (từ vuông góc đến song song).

    \(\left\{ \begin{array}{l}BF \bot AB\\CH \bot AB\,\,\left( {gt} \right)\end{array} \right. \Rightarrow CH\parallel BF\) (từ vuông góc đến song song).

    \( \Rightarrow \) Tứ giác \(BHCF\) là hình bình hành (dhnb).

    \( \Rightarrow \) Hai đường chéo \(BC,\,\,HF\) cắt nhau tại trung điểm mỗi đường (tính chất hình bình hành).

    Mà \(K\) là trung điểm của \(BC\) (theo cách vẽ) nên \(K\) cũng là trung điểm của \(HF\).

    Khi đó \(OK\) là đường trung bình của tam giác \(AHF\) nên \(OK = \dfrac{1}{2}AH\) (tính chất đường trung bình).

    Suy ra đường tròn ngoại tiếp tam giác \(ADE\) là đường tròn \(\left( {I;OK} \right)\).

    Mà \(\left( O \right)\) và \(BC\) cố định, do đó \(O,\,\,K\) cố định nên \(OK\) không đổi.

    Vậy bán kính đường tròn ngoại tiếp tam giác \(ADE\) bằng \(OK\) không đổi.

    Ta có: \(\angle BAC = \dfrac{1}{2}\,\,sd\,\,cung\,\,BC\) (góc nội tiếp bằng nửa số đo cung bị chắn).

    Mà \(BC\) cố định nên \(sd\,\,cung\,\,BC\) không đổi. Do đó \(\angle BAC\) không đổi.

    Xét \(\Delta AED\) và \(\Delta ACB\) có:

    \(\angle BAC\) chung;

    \(\angle AED = \angle ACB\) (góc ngoài và góc trong tại đỉnh đối diện của tứ giác nội tiếp \(BCDE\)).

    \( \Rightarrow \Delta AED \sim \Delta ACB\,\,\left( {g.g} \right)\) theo tỉ số \(k = \dfrac{{AD}}{{AB}}\).

    Do đó ta có: \(\dfrac{{{S_{\Delta AED}}}}{{{S_{\Delta ACB}}}} = {k^2} = {\left( {\dfrac{{AD}}{{AB}}} \right)^2}\).

    Xét tam giác vuông \(ABD\) có: \(\dfrac{{AD}}{{AB}} = \cos \angle BAC\).

    \( \Rightarrow \dfrac{{{S_{\Delta AED}}}}{{{S_{\Delta ABC}}}} = {\cos ^2}\angle BAC\) \( \Rightarrow {S_{\Delta AED}} = {\cos ^2}\angle BAC.{S_{\Delta ABC}}\), mà \(\cos \angle BAC\) không đổi nên để \({S_{\Delta AED}}\) đạt giá trị lớn nhất thì \({S_{\Delta ABC}}\) phải lớn nhất.

    Kéo dài \(AH\) cắt \(BC\) tại \(P\) \( \Rightarrow AP \bot BC\) và \({S_{\Delta ABC}} = \dfrac{1}{2}AP.BC\).

    Do \(BC\) không đổi (theo giả thiết) nên \({S_{\Delta ABC}}\) đạt giá tị lớn nhất khi và chỉ khi \(AP\) lớn nhất.

    Khi đó \(A\) phải là điểm chính giữa của cung lớn \(BC\).

    Vậy \({S_{AED}}\) đạt giá trị lớn nhất khi \(A\) là điểm chính giữa của cung lớn \(BC\).

    Câu V (1,0 điểm)

    Cách giải:

    Cho ba số thực dương \(x,y,z\) thỏa mãn điều kiện \(x + y + z = xyz\). Tìm giá trị nhỏ nhất của biểu thức \(Q = \dfrac{{y + 2}}{{{x^2}}} + \dfrac{{z + 2}}{{{y^2}}} + \dfrac{{x + 2}}{{{z^2}}}\)

    Ta có: \(x + y + z = xyz \Rightarrow \dfrac{1}{{xy}} + \dfrac{1}{{yz}} + \dfrac{1}{{zx}} = 1\)

    Đặt \(\left\{ \begin{array}{l}a = \dfrac{1}{x}\\b = \dfrac{1}{y}\\c = \dfrac{1}{z}\end{array} \right.\left( {a,b,c > 0} \right)\) \( \Rightarrow ab + bc + ca = 1\).

    Khi đó

    \(\begin{array}{l}Q = {a^2}\left( {\dfrac{1}{b} + 2} \right) + {b^2}\left( {\dfrac{1}{c} + 2} \right) + {c^2}\left( {\dfrac{1}{a} + 2} \right)\\\,\,\,\, = \left( {\dfrac{{{a^2}}}{b} + \dfrac{{{b^2}}}{c} + \dfrac{{{c^2}}}{a}} \right) + 2\left( {{a^2} + {b^2} + {c^2}} \right)\end{array}\)

    Áp dụng BĐT \(\dfrac{{{x^2}}}{a} + \dfrac{{{y^2}}}{b} \ge \dfrac{{{{\left( {x + y} \right)}^2}}}{{a + b}}\) ta có:

    \(\dfrac{{{a^2}}}{b} + \dfrac{{{b^2}}}{c} + \dfrac{{{c^2}}}{a} \ge \dfrac{{{{\left( {a + b} \right)}^2}}}{{b + c}} + \dfrac{{{c^2}}}{a} \ge \dfrac{{{{\left( {a + b + c} \right)}^2}}}{{a + b + c}} = a + b + c\)

    Lại có:

    \(\begin{array}{l}{a^2} + {b^2} \ge 2ab\\{b^2} + {c^2} \ge 2bc\\{c^2} + {a^2} \ge 2ca\\ \Rightarrow 2\left( {{a^2} + {b^2} + {c^2}} \right) \ge 2\left( {ab + bc + ca} \right)\\ \Rightarrow {a^2} + {b^2} + {c^2} \ge ab + bc + ca\end{array}\)

    \(\begin{array}{l}{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\\ \ge ab + bc + ca + 2ab + 2bc + 2ca\\ = 3\left( {ab + bc + ca} \right)\\ \Rightarrow a + b + c \ge \sqrt {3\left( {ab + bc + ca} \right)} = \sqrt 3 \end{array}\)

    Do đó

    \(\begin{array}{l}\left( {\dfrac{{{a^2}}}{b} + \dfrac{{{b^2}}}{c} + \dfrac{{{c^2}}}{a}} \right) + 2\left( {{a^2} + {b^2} + {c^2}} \right)\\ \ge a + b + c + 2\left( {ab + bc + ca} \right)\\ \ge \sqrt 3 + 2\end{array}\)

    Vậy \({Q_{\min }} = \sqrt 3 + 2\).

    Dấu “=” xảy ra khi \(a = b = c = \dfrac{1}{{\sqrt 3 }} \Rightarrow x = y = z = \sqrt 3 \). 

    Lời giải chi tiết

      Câu I (2,0 điểm)

      Cách giải:

      Cho biểu thức \(P = \left( {\dfrac{{4\sqrt x }}{{\sqrt x + 2}} - \dfrac{{8x}}{{x - 4}}} \right):\left( {\dfrac{{\sqrt x + 2}}{{\sqrt x - 2}} + 3} \right)\) với \(x \ge 0,\,\,x \ne 1\)\(x \ne 4\).

      1. Rút gọn biểu thức \(P\).

      Với \(x \ge 0,\,\,x \ne 1\) và \(x \ne 4\) ta có:

      \(\begin{array}{l}P = \left( {\dfrac{{4\sqrt x }}{{\sqrt x + 2}} - \dfrac{{8x}}{{x - 4}}} \right):\left( {\dfrac{{\sqrt x + 2}}{{\sqrt x - 2}} + 3} \right)\\P = \left( {\dfrac{{4\sqrt x }}{{\sqrt x + 2}} - \dfrac{{8x}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}} \right):\dfrac{{\sqrt x + 2 + 3\left( {\sqrt x - 2} \right)}}{{\sqrt x - 2}}\\P = \dfrac{{4\sqrt x \left( {\sqrt x - 2} \right) - 8x}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}:\dfrac{{\sqrt x + 2 + 3\sqrt x - 6}}{{\sqrt x - 2}}\\P = \dfrac{{4x - 8\sqrt x - 8x}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}:\dfrac{{4\sqrt x - 4}}{{\sqrt x - 2}}\\P = \dfrac{{ - 8\sqrt x - 4x}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}.\dfrac{{\sqrt x - 2}}{{4\left( {\sqrt x - 1} \right)}}\\P = \dfrac{{ - 4\sqrt x \left( {2 + \sqrt x } \right)}}{{\sqrt x + 2}}.\dfrac{1}{{4\left( {\sqrt x - 1} \right)}}\\P = \dfrac{{ - \sqrt x }}{{\sqrt x - 1}} = \dfrac{{\sqrt x }}{{1 - \sqrt x }}\end{array}\)

      2. Tìm các giá trị của \(x\) để \(P = - 4\).

      Ta có:

      \(\begin{array}{l}P = - 4 \Leftrightarrow \dfrac{{\sqrt x }}{{1 - \sqrt x }} = - 4\\ \Leftrightarrow \sqrt x = - 4\left( {1 - \sqrt x } \right)\\ \Leftrightarrow \sqrt x = - 4 + 4\sqrt x \\ \Leftrightarrow 3\sqrt x = 4\\ \Leftrightarrow \sqrt x = \dfrac{4}{3}\\ \Leftrightarrow x = \dfrac{{16}}{9}\,\,\left( {tm} \right)\end{array}\)

      Vậy để \(P = - 4\) thì \(x = \dfrac{{16}}{9}\).

      Câu II (2,0 điểm)

      Cách giải:

      1. Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(\left( d \right)\) có phương trình \(y = ax + b\). Tìm \(a,\,\,b\) để đường thẳng \(\left( d \right)\) cắt trục tung tại điểm có tung độ bằng 2 và đi qua điểm \(M\left( {2;3} \right)\).

      Đường thẳng \(\left( d \right)\) cắt trục tung tại điểm có tung độ bằng 2 nên đường thẳng \(\left( d \right)\) đi qua điểm \(\left( {0;2} \right)\). Thay tọa độ điểm \(\left( {0;2} \right)\) vào phương trình đường thẳng \(\left( d \right)\) ta có: \(2 = a.0 + b \Leftrightarrow b = 2\).

      Khi đó phương trình đường thẳng \(\left( d \right)\) có dạng \(y = ax + 2\).

      Đường thẳng \(\left( d \right)\) đi qua điểm \(M\left( {2;3} \right)\) nên thay tọa độ điểm \(M\) vào phương trình đường thẳng \(\left( d \right)\) ta có:

      \(3 = a.2 + 2 \Leftrightarrow 2a = 1 \Leftrightarrow a = \dfrac{1}{2}\).

      Vậy \(a = \dfrac{1}{2}\) và \(b = 2.\)

      2. Giải hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 4\\2x - 3y = - 1\end{array} \right.\)

      \(\left\{ \begin{array}{l}x + 3y = 4\\2x - 3y = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x = 3\\x + 3y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\1 + 3y = 4\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x = 1\\3y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right.\).

      Vậy nghiệm của hệ phương trình là \(\left( {x;y} \right) = \left( {1;1} \right)\).

      Câu III (2,0 điểm)

      Cách giải:

      1. Giải phương trình \({x^2} + 5x + 4 = 0\).

      Ta có:

      \(\begin{array}{l}\,\,\,\,\,\,{x^2} + 5x + 4 = 0\\ \Leftrightarrow {x^2} + x + 4x + 4 = 0\\ \Leftrightarrow \left( {{x^2} + x} \right) + \left( {4x + 4} \right) = 0\\ \Leftrightarrow x\left( {x + 1} \right) + 4\left( {x + 1} \right) = 0\\ \Leftrightarrow \left( {x + 1} \right)\left( {x + 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 1 = 0\\x + 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = - 4\end{array} \right.\end{array}\)

      Vậy tập nghiệm của phương trình là \(S = \left\{ { - 1; - 4} \right\}\).

      2. Cho phương trình \({x^2} + 5x + m - 2 = 0\) (\(m\) là tham số). Tìm các giá trị của \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\,{x_2}\) thỏa mãn hệ thức

      \(\dfrac{1}{{{{\left( {{x_1} - 1} \right)}^2}}} + \dfrac{1}{{{{\left( {{x_2} - 1} \right)}^2}}} = 1\)

      Để phương trình đã cho có 2 nghiệm phân biệt \({x_1} \ne 1,\,\,{x_2} \ne 1\) thì

      \(\left\{ \begin{array}{l}\Delta > 0\\1 + 5 + m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{5^2} - 4\left( {m - 2} \right) > 0\\m + 4 \ne 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}25 - 4m + 8 > 0\\m \ne - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4m < 33\\m \ne - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < \dfrac{{33}}{4}\\m \ne - 4\end{array} \right.\).

      Khi đó áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 5\\{x_1}{x_2} = m - 2\end{array} \right.\).

      Theo bài ra ta có:

      \(\begin{array}{l}\,\,\,\,\,\dfrac{1}{{{{\left( {{x_1} - 1} \right)}^2}}} + \dfrac{1}{{{{\left( {{x_2} - 1} \right)}^2}}} = 1 \Leftrightarrow \dfrac{{{{\left( {{x_1} - 1} \right)}^2} + {{\left( {{x_2} - 1} \right)}^2}}}{{{{\left( {{x_1} - 1} \right)}^2}.{{\left( {{x_2} - 1} \right)}^2}}} = 1\\ \Leftrightarrow x_1^2 - 2{x_1} + 1 + x_2^2 - 2{x_2} + 1 = {\left[ {{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1} \right]^2}\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} - 2\left( {{x_1} + {x_2}} \right) + 2 = {\left[ {{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1} \right]^2}\\ \Rightarrow 25 - 2\left( {m - 2} \right) - 2.\left( { - 5} \right) + 2 = {\left( {m - 2 + 5 + 1} \right)^2}\\ \Leftrightarrow 25 - 2m + 4 + 10 + 2 = {\left( {m + 4} \right)^2}\\ \Leftrightarrow - 2m + 41 = {m^2} + 8m + 16\\ \Leftrightarrow {m^2} + 10m - 25 = 0\,\,\left( * \right)\end{array}\)

      Ta có: \({\Delta _m} = {\left( { - 5} \right)^2} - \left( { - 25} \right) = 50 > 0\), do đó phương trình (*) có 2 nghiệm phân biệt

      \(\left[ \begin{array}{l}{m_1} = \dfrac{{ - 10 + \sqrt {50} }}{2} = - 5 + 5\sqrt 2 \\{m_1} = \dfrac{{ - 10 - \sqrt {50} }}{2} = - 5 - 5\sqrt 2 \end{array} \right.\,\,\left( {tm} \right)\).

      Vậy có hai giá trị của \(m\) thỏa mãn yêu cầu bài toán là \(m = - 5 \pm 5\sqrt 2 \). 

      Câu IV (3,0 điểm)

      Cách giải:

      Cho tam giác nhọn \(ABC\) nội tiếp đường tròn \(\left( O \right)\). Các đường cao \(BD,\,\,CE\) (\(D\) thuộc \(AC\), \(E\) thuộc \(AB\)) của tam giác kéo dài lần lượt cắt đường tròn \(\left( O \right)\) tại các điểm \(M\)\(N\) (\(M\) khác \(B\), \(N\) khác \(C\)).

      Đề thi vào 10 môn Toán Thanh Hóa năm 2020 1 1

      1. Chứng minh tứ giác \(BCDE\) nội tiếp được trong một đường tròn.

      Vì \(BD,\,\,CE\) là các đường cao của \(\Delta ABC\) nên \(BD \bot AC,\,\,CE \bot AB\).

      \( \Rightarrow \angle BDC = \angle BEC = {90^0}\).

      Suy ra tứ giác \(BCDE\) là tứ giác nội tiếp (Tứ giác có 2 đỉnh kề cùng nhìn một cạnh dưới các góc bằng nhau).

      2. Chứng minh \(MN\) song song với \(DE\).

      Vì \(BCDE\) là tứ giác nội tiếp (cmt) nên \(\angle BDE = \angle BCE\) (hai góc nội tiếp cùng chắn cung \(BE\)).

      Mà \(\angle BCE = \angle BCN = \angle BMN\) (hai góc nội tiếp cùng chắn cung \(BN\) của \(\left( O \right)\)).

      \( \Rightarrow \angle BDE = \angle BMN\,\). Mà 2 góc này ở vị trí hai góc đồng vị bằng nhau.

      Vậy \(MN\parallel DE\,\,\,\left( {dhnb} \right)\,\,\left( {dpcm} \right)\).

      3. Khi đường tròn \(\left( O \right)\) và dây \(BC\) cố định, điểm \(A\) di động trên cung lớn \(BC\) sao cho tam giác \(ABC\) nhọn, chứng minh bán kính đường tròn ngoại tiếp tam giác \(ADE\) không đổi và tìm vị trí của điểm \(A\) để diện tích tam giác \(ADE\) đạt giá trị lớn nhất.

      Gọi \(BD \cap CE = \left\{ H \right\}\).

      Xét tứ giác \(AEHD\) có \(\angle AEH + \angle ADH = {90^0} + {90^0} = {180^0}\).

      \( \Rightarrow AEHD\) là tứ giác nội tiếp (tứ giác có tổng hai góc đối bằng \({180^0}\)).

      Lại có \(\angle AEH = {90^0}\) nên là góc nội tiếp chắn nửa đường tròn, do đó tứ giác \(AEHD\) nội tiếp đường tròn đường kính \(AH\), tâm \(I\) là trung điểm của \(AH\).

      Suy ra đường tròn ngoại tiếp tam giác \(ADE\) là đường tròn \(\left( {I;\dfrac{{AH}}{2}} \right)\).

      Kẻ đường kính \(AF\) và gọi \(K\) là trung điểm của \(BC\).

      Vì \(\angle ABF,\,\,\angle ACF\) là các góc nội tiếp chắn nửa đường tròn \(\left( O \right)\) nên \(\angle ABF = \angle ACF = {90^0}\).

      Ta có: \(\left\{ \begin{array}{l}CF \bot AC\\BH \bot AC\,\,\left( {gt} \right)\end{array} \right. \Rightarrow CF\parallel BH\) (từ vuông góc đến song song).

      \(\left\{ \begin{array}{l}BF \bot AB\\CH \bot AB\,\,\left( {gt} \right)\end{array} \right. \Rightarrow CH\parallel BF\) (từ vuông góc đến song song).

      \( \Rightarrow \) Tứ giác \(BHCF\) là hình bình hành (dhnb).

      \( \Rightarrow \) Hai đường chéo \(BC,\,\,HF\) cắt nhau tại trung điểm mỗi đường (tính chất hình bình hành).

      Mà \(K\) là trung điểm của \(BC\) (theo cách vẽ) nên \(K\) cũng là trung điểm của \(HF\).

      Khi đó \(OK\) là đường trung bình của tam giác \(AHF\) nên \(OK = \dfrac{1}{2}AH\) (tính chất đường trung bình).

      Suy ra đường tròn ngoại tiếp tam giác \(ADE\) là đường tròn \(\left( {I;OK} \right)\).

      Mà \(\left( O \right)\) và \(BC\) cố định, do đó \(O,\,\,K\) cố định nên \(OK\) không đổi.

      Vậy bán kính đường tròn ngoại tiếp tam giác \(ADE\) bằng \(OK\) không đổi.

      Ta có: \(\angle BAC = \dfrac{1}{2}\,\,sd\,\,cung\,\,BC\) (góc nội tiếp bằng nửa số đo cung bị chắn).

      Mà \(BC\) cố định nên \(sd\,\,cung\,\,BC\) không đổi. Do đó \(\angle BAC\) không đổi.

      Xét \(\Delta AED\) và \(\Delta ACB\) có:

      \(\angle BAC\) chung;

      \(\angle AED = \angle ACB\) (góc ngoài và góc trong tại đỉnh đối diện của tứ giác nội tiếp \(BCDE\)).

      \( \Rightarrow \Delta AED \sim \Delta ACB\,\,\left( {g.g} \right)\) theo tỉ số \(k = \dfrac{{AD}}{{AB}}\).

      Do đó ta có: \(\dfrac{{{S_{\Delta AED}}}}{{{S_{\Delta ACB}}}} = {k^2} = {\left( {\dfrac{{AD}}{{AB}}} \right)^2}\).

      Xét tam giác vuông \(ABD\) có: \(\dfrac{{AD}}{{AB}} = \cos \angle BAC\).

      \( \Rightarrow \dfrac{{{S_{\Delta AED}}}}{{{S_{\Delta ABC}}}} = {\cos ^2}\angle BAC\) \( \Rightarrow {S_{\Delta AED}} = {\cos ^2}\angle BAC.{S_{\Delta ABC}}\), mà \(\cos \angle BAC\) không đổi nên để \({S_{\Delta AED}}\) đạt giá trị lớn nhất thì \({S_{\Delta ABC}}\) phải lớn nhất.

      Kéo dài \(AH\) cắt \(BC\) tại \(P\) \( \Rightarrow AP \bot BC\) và \({S_{\Delta ABC}} = \dfrac{1}{2}AP.BC\).

      Do \(BC\) không đổi (theo giả thiết) nên \({S_{\Delta ABC}}\) đạt giá tị lớn nhất khi và chỉ khi \(AP\) lớn nhất.

      Khi đó \(A\) phải là điểm chính giữa của cung lớn \(BC\).

      Vậy \({S_{AED}}\) đạt giá trị lớn nhất khi \(A\) là điểm chính giữa của cung lớn \(BC\).

      Câu V (1,0 điểm)

      Cách giải:

      Cho ba số thực dương \(x,y,z\) thỏa mãn điều kiện \(x + y + z = xyz\). Tìm giá trị nhỏ nhất của biểu thức \(Q = \dfrac{{y + 2}}{{{x^2}}} + \dfrac{{z + 2}}{{{y^2}}} + \dfrac{{x + 2}}{{{z^2}}}\)

      Ta có: \(x + y + z = xyz \Rightarrow \dfrac{1}{{xy}} + \dfrac{1}{{yz}} + \dfrac{1}{{zx}} = 1\)

      Đặt \(\left\{ \begin{array}{l}a = \dfrac{1}{x}\\b = \dfrac{1}{y}\\c = \dfrac{1}{z}\end{array} \right.\left( {a,b,c > 0} \right)\) \( \Rightarrow ab + bc + ca = 1\).

      Khi đó

      \(\begin{array}{l}Q = {a^2}\left( {\dfrac{1}{b} + 2} \right) + {b^2}\left( {\dfrac{1}{c} + 2} \right) + {c^2}\left( {\dfrac{1}{a} + 2} \right)\\\,\,\,\, = \left( {\dfrac{{{a^2}}}{b} + \dfrac{{{b^2}}}{c} + \dfrac{{{c^2}}}{a}} \right) + 2\left( {{a^2} + {b^2} + {c^2}} \right)\end{array}\)

      Áp dụng BĐT \(\dfrac{{{x^2}}}{a} + \dfrac{{{y^2}}}{b} \ge \dfrac{{{{\left( {x + y} \right)}^2}}}{{a + b}}\) ta có:

      \(\dfrac{{{a^2}}}{b} + \dfrac{{{b^2}}}{c} + \dfrac{{{c^2}}}{a} \ge \dfrac{{{{\left( {a + b} \right)}^2}}}{{b + c}} + \dfrac{{{c^2}}}{a} \ge \dfrac{{{{\left( {a + b + c} \right)}^2}}}{{a + b + c}} = a + b + c\)

      Lại có:

      \(\begin{array}{l}{a^2} + {b^2} \ge 2ab\\{b^2} + {c^2} \ge 2bc\\{c^2} + {a^2} \ge 2ca\\ \Rightarrow 2\left( {{a^2} + {b^2} + {c^2}} \right) \ge 2\left( {ab + bc + ca} \right)\\ \Rightarrow {a^2} + {b^2} + {c^2} \ge ab + bc + ca\end{array}\)

      \(\begin{array}{l}{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\\ \ge ab + bc + ca + 2ab + 2bc + 2ca\\ = 3\left( {ab + bc + ca} \right)\\ \Rightarrow a + b + c \ge \sqrt {3\left( {ab + bc + ca} \right)} = \sqrt 3 \end{array}\)

      Do đó

      \(\begin{array}{l}\left( {\dfrac{{{a^2}}}{b} + \dfrac{{{b^2}}}{c} + \dfrac{{{c^2}}}{a}} \right) + 2\left( {{a^2} + {b^2} + {c^2}} \right)\\ \ge a + b + c + 2\left( {ab + bc + ca} \right)\\ \ge \sqrt 3 + 2\end{array}\)

      Vậy \({Q_{\min }} = \sqrt 3 + 2\).

      Dấu “=” xảy ra khi \(a = b = c = \dfrac{1}{{\sqrt 3 }} \Rightarrow x = y = z = \sqrt 3 \). 

      Bạn đang khám phá nội dung Đề thi vào 10 môn Toán Thanh Hóa năm 2020 trong chuyên mục bài tập toán 9 trên nền tảng toán. Được biên soạn chuyên sâu và bám sát chương trình sách giáo khoa hiện hành, bộ bài tập toán trung học cơ sở này cam kết tối ưu hóa toàn diện quá trình ôn luyện, củng cố kiến thức Toán lớp 9 cho học sinh, đặc biệt là chuẩn bị cho các kỳ thi quan trọng, thông qua phương pháp tiếp cận trực quan và mang lại hiệu quả học tập vượt trội.
      Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên MonToan.com.vn bằng cách gửi về:
      Facebook: MÔN TOÁN
      Email: montoanmath@gmail.com

      Đề thi vào 10 môn Toán Thanh Hóa năm 2020: Phân tích chi tiết và hướng dẫn giải

      Kỳ thi tuyển sinh vào lớp 10 môn Toán Thanh Hóa luôn được đánh giá là một kỳ thi quan trọng, quyết định đến con đường học vấn của các em học sinh. Để giúp các em ôn luyện hiệu quả, montoan.com.vn xin giới thiệu chi tiết về đề thi vào 10 môn Toán Thanh Hóa năm 2020, bao gồm cấu trúc đề thi, các dạng bài tập thường gặp và hướng dẫn giải chi tiết.

      Cấu trúc đề thi vào 10 môn Toán Thanh Hóa năm 2020

      Đề thi vào 10 môn Toán Thanh Hóa năm 2020 thường có cấu trúc gồm 3 phần chính:

      1. Phần trắc nghiệm: Thường chiếm khoảng 30% tổng số điểm, bao gồm các câu hỏi về kiến thức cơ bản, kỹ năng tính toán và khả năng vận dụng.
      2. Phần tự luận: Thường chiếm khoảng 70% tổng số điểm, bao gồm các bài toán về đại số, hình học và số học.
      3. Phần bài tập nâng cao (nếu có): Dành cho các thí sinh có lực học khá giỏi, yêu cầu khả năng tư duy logic và sáng tạo.

      Các dạng bài tập thường gặp trong đề thi vào 10 môn Toán Thanh Hóa năm 2020

      • Đại số: Phương trình bậc nhất, phương trình bậc hai, hệ phương trình, bất phương trình, hàm số, phương trình vô tỷ, phương trình lượng giác.
      • Hình học: Tam giác, tứ giác, đường tròn, hệ tọa độ, vectơ, hình học không gian.
      • Số học: Số nguyên tố, ước số, bội số, phân số, phần trăm, lãi suất.

      Hướng dẫn giải đề thi vào 10 môn Toán Thanh Hóa năm 2020

      Để giải đề thi vào 10 môn Toán Thanh Hóa năm 2020 hiệu quả, các em cần:

      • Nắm vững kiến thức cơ bản: Hiểu rõ các định nghĩa, định lý, công thức và kỹ năng giải toán cơ bản.
      • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng giải toán và làm quen với các dạng bài tập thường gặp.
      • Phân tích đề thi: Đọc kỹ đề bài, xác định yêu cầu của bài toán và lựa chọn phương pháp giải phù hợp.
      • Kiểm tra lại kết quả: Sau khi giải xong bài toán, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

      Một số lưu ý khi làm bài thi vào 10 môn Toán Thanh Hóa năm 2020

      • Phân bổ thời gian hợp lý: Chia đều thời gian cho các phần của đề thi và không nên dành quá nhiều thời gian cho một bài toán khó.
      • Viết bài rõ ràng, dễ đọc: Trình bày bài giải một cách logic, khoa học và dễ hiểu.
      • Sử dụng máy tính bỏ túi: Sử dụng máy tính bỏ túi để tính toán nhanh chóng và chính xác.
      • Giữ bình tĩnh và tự tin: Tin vào khả năng của bản thân và cố gắng hết mình để đạt kết quả tốt nhất.

      Tài liệu ôn thi vào 10 môn Toán Thanh Hóa năm 2020 tại montoan.com.vn

      montoan.com.vn cung cấp đầy đủ các tài liệu ôn thi vào 10 môn Toán Thanh Hóa năm 2020, bao gồm:

      • Đề thi vào 10 môn Toán Thanh Hóa năm 2020 (chính thức và thử).
      • Tuyển tập các bài tập trắc nghiệm và tự luận môn Toán lớp 9.
      • Các khóa học luyện thi vào 10 môn Toán online chất lượng cao.
      • Bài giảng và video hướng dẫn giải toán chi tiết.

      Lời khuyên từ các chuyên gia

      Các chuyên gia giáo dục khuyên rằng, để đạt kết quả cao trong kỳ thi tuyển sinh vào lớp 10 môn Toán Thanh Hóa, các em cần có một kế hoạch ôn luyện khoa học, hợp lý và kiên trì thực hiện. Bên cạnh việc học trên lớp, các em nên dành thời gian tự học, làm bài tập và tham gia các khóa học luyện thi để nâng cao kiến thức và kỹ năng giải toán.

      Kết luận

      Hy vọng với những thông tin chi tiết và hữu ích trên đây, các em học sinh sẽ có thêm kiến thức và tự tin hơn trong kỳ thi tuyển sinh vào lớp 10 môn Toán Thanh Hóa năm 2020. Chúc các em thành công!

      Tài liệu, đề thi và đáp án Toán 9

      Tài liệu, đề thi và đáp án Toán 9