1. Môn Toán
  2. Đề số 21 - Đề thi vào lớp 10 môn Toán

Đề số 21 - Đề thi vào lớp 10 môn Toán

Đề số 21 - Đề thi vào lớp 10 môn Toán

Chào mừng các em học sinh đến với Đề số 21 - Đề thi vào lớp 10 môn Toán tại montoan.com.vn. Đây là một đề thi thử quan trọng, được thiết kế bám sát cấu trúc đề thi tuyển sinh vào lớp 10 của các trường THPT trên cả nước.

Đề thi này không chỉ giúp các em làm quen với dạng đề mà còn rèn luyện kỹ năng giải quyết vấn đề, quản lý thời gian và tự đánh giá năng lực bản thân.

Hãy cùng montoan.com.vn chinh phục kỳ thi vào lớp 10 đầy thử thách!

Đề thi vào lớp 10 môn Toán - Đề số 21 có đáp án và lời giải chi tiết

Đề bài

Câu 1. (2,0 điểm)

1. Giải các phương trình sau:

a) \(5\left( {x + 1} \right) = 3x + 7\)

b) \({x^4} - {x^2} - 12 = 0\)

2. Cho hệ phương trình: \(\left\{ \begin{array}{l}3x - y = 2m - 1\\x + 2y = 3m + 2\end{array} \right.\)

a) Giải hệ phương trình khi \(m = 1\) b) Tìm m để hệ có nghiệm \(\left( {x;y} \right)\) thỏa mãn: \({x^2} + {y^2} = 10\)

Câu 2. (1,5 điểm). Cho phương trình \(A = \left( {\dfrac{1}{{x - \sqrt x }} + \dfrac{1}{{\sqrt x - 1}}} \right):\dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x - 1} \right)}^2}}}\) (với \(x > 0,x \ne 1\) )

a) Rút gọn biểu thức A.

b) Tìm giá trị lớn nhất của biểu thức \(P = A - 9\sqrt x \)

Câu 3. (1,0 điểm). Một chiếc bè trôi từ bến sông A đến bên B với vận tốc dòng nước là 4km/h, cùng lúc đó một chiếc thuyền chạy từ bến A đến B rồi quay lại ngay thì gặp chiếc bè tại vị trí C cách bến A là 8km. Tính vận tốc thực của thuyền biết khoảng cách giữa hai bến A và B là 24 km.

Câu 4. (1.5 điểm). Trong hệ tọa độ Oxy, cho Parabol \(y = {x^2}\left( P \right)\) và đường thẳng có phương trình \(y = \left( {m - 1} \right)x + {m^2} - 2m + 3\left( d \right)\)

a) Chứng minh với mọi giá trị của m thì (d) luôn cắt (P) tại hai điểm phân biệt.

b) Giả sử (d) cắt (P) tại hai điểm phân biệt A, B. Tìm m để tam giác OAB cân tại O. Khi đó tính diện tích tam giác OAB.

Câu 5. (3.0 điểm) Cho nửa đường tròn tâm O đường kính AB, M là một điểm bất kỳ thuộc nửa đường tròn (M khác A, B). Tiếp tuyến tại M cắt các tiếp tuyến Ax và By của nửa đường tròn đó lần lượt tại C và D.

a) Chứng minh: \(\widehat {COD} = {90^0}\)

b) Gọi K là giao điểm của BM với Ax. Chứng minh: \(\Delta KMO \sim \Delta AMD\)

c) Tìm giá trị nhỏ nhất của tổng diện tích hai tam giác ACM và BDM.

Câu 6. (1,0 điểm)

a) Cho hàm số \(y = f\left( x \right)\) với \(f\left( x \right)\) là một biểu thức đại số xác định với mọi số thực \(x \ne 0\) . Biết rằng: \(f\left( x \right) + 3f\left( {\dfrac{1}{x}} \right) = {x^2}\left( {\forall x \ne 0} \right).\) Tính \(f\left( 2 \right)\)

b) Cho ba số nguyên dương \(a,b,c\) đôi một khác nhau và thỏa mãn: \(a\) là ước của \(b + c + bc\), \(b\) là ước của \(c + a + ca\) và \(c\) là ước của \(a + b + ab\) . Chứng minh \(a,b,c\) không đồng thời là các số nguyên tố.

Lời giải chi tiết

Câu 1.

1. Giải các phương trình sau:

a)\(5\left( {x + 1} \right) = 3x + 7\)

\(\begin{array}{l} \Leftrightarrow 5x - 3x = 7 - 5\\ \Leftrightarrow 2x = 2\\ \Leftrightarrow x = 1\end{array}\)

b) \({x^4} - {x^2} - 12 = 0\) (1)

Đặt \({x^2} = t\,\,\left( {t \ge 0} \right)\) Khi đó phương trình (1) trở thành:

\(\begin{array}{l}{t^2} - t - 12 = 0\\ \Leftrightarrow {t^2} + 3t - 4t - 12 = 0\\ \Leftrightarrow \left( {t + 3} \right)\left( {t - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t = - 3\left( {ktm} \right)\\t = 4\left( {tm} \right)\end{array} \right.\end{array}\)

Với \(t = 4 \Leftrightarrow {x^2} = 4 \Leftrightarrow x = \pm 2\)

Vậy phương trình (1) có tập nghiệm là: \(S = \left\{ { - 2;2} \right\}\)

2) Cho hệ phương trình: \(\left\{ \begin{array}{l}3x - y = 2m - 1\\x + 2y = 3m + 2\end{array} \right.\)

a) Giải hệ phương trình khi \(m = 1\)

Thay m = 1 vào hệ phương trình ta được hệ phương trình mới:

\(\left\{ \begin{array}{l}3x - y = 2.1 - 1\\x + 2y = 3.1 + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x - y = 1\\x + 2y = 5\end{array} \right.\)

\(\Leftrightarrow \left\{ \begin{array}{l}6x - 2y = 2\\x + 2y = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 3x - 1\end{array} \right.\)

\(\Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)

Vậy hệ phương trình đã cho có nghiệm là: \(\left( {x;y} \right) = \left( {1;2} \right)\)

b) Tìm m để hệ có nghiệm \(\left( {x;y} \right)\) thỏa mãn: \({x^2} + {y^2} = 10\)

Ta có: \(\dfrac{3}{1} \ne \dfrac{{ - 1}}{2}\) nên hệ phương trình đã cho luôn có nghiệm \(\left( {x;y} \right)\).

\(\left\{ \begin{array}{l}3x - y = 2m - 1\\x + 2y = 3m + 2\end{array} \right.\)

\(\Leftrightarrow \left\{ \begin{array}{l}y = 3x - 2m + 1\\x + 2\left( {3x - 2m + 1} \right) = 3m + 2\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}y = 3x - 2m + 1\\x + 6x - 4m + 2 - 3m - 2 = 0\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}y = 3x - 2m + 1\\x = m\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}y = m + 1\\x = m\end{array} \right.\)

Theo đề bài ta có nghiệm \(\left( {x;y} \right)\) thỏa mãn:

\(\begin{array}{l}{x^2} + {y^2} = 10\\ \Leftrightarrow {m^2} + {\left( {m + 1} \right)^2} = 10\\ \Leftrightarrow 2{m^2} + 2m - 9 = 0\,\,\,\,\left( * \right)\end{array}\)

\(\Delta ' = 1 + 18 = 19 > 0\)

Khi đó (*) luôn có 2 nghiệm phân biệt: \(\left[ \begin{array}{l}m = \dfrac{{ - 1 - \sqrt {19} }}{2}\\m = \dfrac{{ - 1 + \sqrt {19} }}{2}\end{array} \right.\)

Câu 2.

a) Rút gọn biểu thức A.

\(A = \left( {\dfrac{1}{{x - \sqrt x }} + \dfrac{1}{{\sqrt x - 1}}} \right):\dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x - 1} \right)}^2}}}\) (với \(x > 0,x \ne 1\))

\(\begin{array}{l}A = \left( {\dfrac{1}{{\sqrt x \left( {\sqrt x - 1} \right)}} + \dfrac{{\sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right):\dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x - 1} \right)}^2}}}\\ = \dfrac{{1 + \sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)}}.\dfrac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x + 1}}\\ = \dfrac{{\sqrt x - 1}}{{\sqrt x }}\end{array}\)

b) Tìm giá trị lớn nhất của biểu thức \(P = A - 9\sqrt x \)

\(\begin{array}{l}P = A - 9\sqrt x \\ = \dfrac{{\sqrt x - 1}}{{\sqrt x }} - 9\sqrt x \\ = 1 - \left( {\dfrac{1}{{\sqrt x }} + 9\sqrt x } \right)\end{array}\)

Với \(x > 0,x \ne 1\), áp dụng bất đẳng thức Cosi cho hai số dương \(\dfrac{1}{{\sqrt x }};9\sqrt x \) ta có: \(\dfrac{1}{{\sqrt x }} + 9\sqrt x \ge 2\sqrt {\dfrac{1}{{\sqrt x }}.9\sqrt x } = 6\)

Từ đó ta có: \(1 - \left( {\dfrac{1}{{\sqrt x }} + 9\sqrt x } \right) \le 1 - 6 = - 5\)

Vậy giá trị lớn nhất của biểu thức P là -5. Dấu “= xảy ra khi và chỉ khi \(\dfrac{1}{{\sqrt x }} = 9\sqrt x \Leftrightarrow x = \dfrac{1}{9}\)

Câu 3.

Một chiếc bè trôi từ bến sông A đến bên B với vận tốc dòng nước là 4km/h, cùng lúc đó một chiếc thuyền chạy từ bến A đến B rồi quay lại ngay thì gặp chiếc bè tại vị trí C cách bến A là 8km. Tính vận tốc thực của thuyền biết khoảng cách giữa hai bến A và B là 24 km.

Gọi vận tốc thực của thuyền là: \(\) \(\left( {x > 4} \right)\)

Vận tốc xuôi dòng của thuyền là: \(x + 4\left( {km/h} \right)\)

Vận tốc ngược dòng của thuyền là: \(x - 4\left( {km/h} \right)\)

Vì thuyền chạy từ A đến B rồi quay lại ngay thì gặp chiếc bè tại vị trị C cách bến A là 8km tức là thuyền đi xuôi dòng được 24 km và ngược dòng được 24 – 8 = 16 km, nên ta có thời gian của thuyền đi đến khi gặp chiếc bè là: \(\dfrac{{24}}{{x + 4}} + \dfrac{{16}}{{x - 4}}\left( h \right)\)

Thời gian của chiếc bè trôi đến khi gặp thuyền là: \(8:4 = 2\left( h \right)\)

Khi đó ta có phương trình:

 \(\begin{array}{l}\dfrac{{24}}{{x + 4}} + \dfrac{{16}}{{x - 4}} = 2\\ \Leftrightarrow \dfrac{{24\left( {x - 4} \right) + 16\left( {x + 4} \right)}}{{{x^2} - 16}} = \dfrac{{2\left( {{x^2} - 16} \right)}}{{{x^2} - 16}}\\ \Leftrightarrow 24x - 96 + 16x + 64 = 2{x^2} - 32\\ \Leftrightarrow {x^2} - 20x = 0\\ \Leftrightarrow x\left( {x - 20} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {ktm} \right)\\x = 20\left( {tm} \right)\end{array} \right.\end{array}\)

Vậy vận tốc thực của thuyền là 20 km/h.

Câu 4.

Trong hệ tọa độ Oxy, cho Parabol \(y = {x^2}\left( P \right)\) và đường thẳng có phương trình \(y = \left( {m - 1} \right)x + {m^2} - 2m + 3\left( d \right)\)

a) Chứng minh với mọi giá trị của m thì (d) luôn cắt (P) tại hai điểm phân biệt.

Phương trình hoành độ giao điểm của (P) và (d) là:

\(\begin{array}{l}{x^2} = \left( {m - 1} \right)x + {m^2} - 2m + 3\\ \Leftrightarrow {x^2} - \left( {m - 1} \right)x - {m^2} + 2m - 3 = 0\,\,\,\,\left( 1 \right)\end{array}\)

Số giao điểm của (P) và (d) chính là số nghiệm của phương trình (1). Ta có:

\(\begin{array}{l}\Delta = {\left( {m - 1} \right)^2} - 4\left( { - {m^2} + 2m - 3} \right)\\ = {m^2} - 2m + 1 + 4{m^2} - 8m + 12\\ = 5{m^2} - 10m + 13\\ = 5\left( {{m^2} - 2m + 1} \right) + 8\\ = 5{\left( {m - 1} \right)^2} + 8 > 0,\forall m\end{array}\)

Vậy phương trình (1) luôn có hai nghiệm phân biệt. Nên (d) luôn cắt (P) tại hai điểm phân biệt.

b) Giả sử (d) cắt (P) tại hai điểm phân biệt A, B: \(A\left( {{x_1};{y_1}} \right);B\left( {{x_2};{y_2}} \right),\left( {{x_1} \ne {x_2}} \right)\) mà A, B thuộc vào (P) nên \(A\left( {{x_1};x_1^2} \right);B\left( {{x_2};x_2^2} \right)\)

Áp dụng hệ thức Viet cho phương trình (1) ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( * \right)\\{x_1}{x_2} = - {m^2} + 2m - 3\,\,\,\left( {**} \right)\end{array} \right.\)

Tam giác OAB cân tại O nên OA = OB hay \(O{A^2} = O{B^2}\)

\(\begin{array}{l} \Leftrightarrow x_1^2 + {\left( {x_1^2} \right)^2} = x_2^2 + {\left( {x_2^2} \right)^2}\\ \Leftrightarrow x_1^2 + x_1^4 = x_2^2 + x_2^4\\ \Leftrightarrow \left( {x_1^2 - x_2^2} \right) + \left( {x_1^4 - x_2^4} \right) = 0\\ \Leftrightarrow \left( {x_1^2 - x_2^2} \right)\left( {1 + x_1^2 + x_2^2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{x_1} = {x_2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {ktm} \right)\\{x_1} = - {x_2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\\1 + x_1^2 + x_2^2 = 0\,\,\,\,\,\left( 4 \right)\end{array} \right.\end{array}\)

+) TH1: Kết hợp (3) với (*) ta có: \(\left\{ \begin{array}{l}{x_1} = - {x_2}\\{x_1} + {x_2} = m - 1\end{array} \right. \Leftrightarrow m = 1\).

+) TH2: Từ (4) ta có \(x_1^2 + x_2^2 + 1 = 0\) (vô lí vì \(x_1^2 \ge 0;\,\,x_2^2 \ge 0 \Rightarrow x_1^2 + x_2^2 + 1 > 0\))

Kết luận: Vậy m = 1 thì tam giác OAB cân tại O.

Với m = 1 thì (d) trở thành: y = 2 là 1 đường thẳng song song với trục hoành và cắt trục tung tại điểm có tung độ bằng 2.

Đề số 21 - Đề thi vào lớp 10 môn Toán 1

Với m = 1 ta có: Phương trình (1) trở thành:

Ta có: \(AB = \sqrt {{{\left( {\sqrt 2 + \sqrt 2 } \right)}^2} + {{\left( {2 - 2} \right)}^2}} = \sqrt 8 \)

Ta có: \({S_{OAB}} = \dfrac{1}{2}OH.AB = \dfrac{1}{2}.2.\sqrt 8 = \sqrt 8 \left( {dvdt} \right)\)

Câu 5.

Cho nửa đường tròn tâm O đường kính AB, M là một điểm bất kỳ thuộc nửa đường tròn (M khác A, B). Tiếp tuyến tại M cắt các tiếp tuyến Ax và By của nửa đường tròn đó lần lượt tại C và D.

Đề số 21 - Đề thi vào lớp 10 môn Toán 2

a) Chứng minh \(\widehat {COD} = {90^0}\).

Ta có: OC là tia phân giác của góc AOM; OD là tia phân giác của góc BOM (tính chất hai tiếp tuyến cắt nhau)

Mà \(\widehat {AOM}\) và \(\widehat {BOM}\) là hai góc kề bù \( \Rightarrow OC \bot OD\).

\( \Rightarrow \widehat {COD} = {90^0}\).

b) Gọi K là giao điểm của BM và Ax. Chứng minh \(\Delta KMO \sim \Delta AMD\)

Xét tứ giác OBDM có \(\angle OBD + \angle OMD = {90^0} + {90^0} = {180^0}\)

\(\Rightarrow \) Tứ giác OBDM là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800)

\( \Rightarrow \angle ABM = \angle ODM\) (hai góc nội tiếp cùng chắn cung OM)

Lại có \(\angle KAM = \angle ABM\) (hai góc nội tiếp cùng chắn cung AM).

\( \Rightarrow \angle KAM = \angle ODM\)

Xét tam giác AMK và tam giác DMO có:

\(\angle KAM = \angle ODM\)(cmt)

\( \Rightarrow \angle AMK = \angle OMD = {90^0}\)

\( \Rightarrow \Delta AMK \sim \Delta DMO\,\,\left( {g.g} \right) \)

\(\Rightarrow \dfrac{{MK}}{{MO}} = \dfrac{{MA}}{{MD}}\)

Ta có:

\(\begin{array}{l}\angle KMO = \angle KMC + \angle CMO = \angle KMC + {90^0}\\\angle AMD = \angle AMB + \angle BMD = \angle BMD + {90^0}\end{array}\)

Mà \(\angle KMC = \angle BMD\) (2 góc đối đỉnh)

Nên \(\angle KMO = \angle AMD\)

Xét tam giác KMO và tam giác AMD có:

\(\begin{array}{l}\angle KMO = \angle AMD\,\,\left( {cmt} \right);\\\dfrac{{MK}}{{MO}} = \dfrac{{MA}}{{MD}}\,\,\left( {cmt} \right)\end{array}\)

\( \Rightarrow \Delta KMO \sim \Delta AMD\,\,\left( {c.g.c} \right)\)

c) Tìm giá trị nhỏ nhất của tổng diện tích hai tam giác ACM và BDM.

Ta dễ dàng chứng minh được \(\Delta ACM \sim \Delta BOM\,\,\left( {g.g} \right)\)

\(\Rightarrow \dfrac{{{S_{ACM}}}}{{{S_{OBM}}}} = \dfrac{{A{C^2}}}{{{R^2}}} = \dfrac{{A{M^2}}}{{B{M^2}}}\)

Lại có \({S_{OBM}} = \dfrac{1}{2}{S_{MAB}}\)

\(\Rightarrow {S_{ACM}} = \dfrac{1}{2}{S_{MAB}}.\dfrac{{M{A^2}}}{{M{B^2}}}\) 

Tương tự \(\Delta BDM \sim \Delta AOM\,\,\left( {g.g} \right) \)

\(\Rightarrow \dfrac{{{S_{BDM}}}}{{{S_{AOM}}}} = \dfrac{{B{D^2}}}{{{R^2}}} = \dfrac{{B{M^2}}}{{A{M^2}}}\)

Lại có \({S_{AOM}} = \dfrac{1}{2}{S_{MAB}} \)

\(\Rightarrow {S_{BDM}} = \dfrac{1}{2}{S_{MAB}}.\dfrac{{B{M^2}}}{{A{M^2}}}\)

\( \Rightarrow {S_{ACM}} + {S_{BDM}} = \dfrac{1}{2}{S_{MAB}}\dfrac{{A{C^2} + B{D^2}}}{{{R^2}}}\)

\(\Delta MAB \sim \Delta MCD\,\,\left( {g.g} \right) \)

\(\Rightarrow \dfrac{{{S_{MAB}}}}{{{S_{MCD}}}} = \dfrac{{A{B^2}}}{{C{D^2}}}\)

\(\Rightarrow {S_{MAB}} = {S_{MCD}}.\dfrac{{4{R^2}}}{{C{D^2}}} = \dfrac{1}{2}R.CD.\dfrac{{4{R^2}}}{{C{D^2}}} = \dfrac{{2{R^3}}}{{CD}}\)

\( \Rightarrow {S_{ACM}} + {S_{BDM}} = \dfrac{1}{2}.\dfrac{{2{R^3}}}{{CD}}.\dfrac{{A{C^2} + B{D^2}}}{{{R^2}}} = R.\dfrac{{A{C^2} + B{D^2}}}{{CD}}\)

Ta có \(AC = CM;\,\,BD = BM;\,\,CD = CM + DM\)

\( \Rightarrow {S_{ACM}} + {S_{BDM}} = R.\dfrac{{C{M^2} + D{M^2}}}{{CM + DM}}\)

Áp dụng BĐT Bunhiacopxki ta có \({\left( {CM + DM} \right)^2} \le 2\left( {C{M^2} + D{M^2}} \right) \Rightarrow \dfrac{{C{M^2} + D{M^2}}}{{{{\left( {CM + DM} \right)}^2}}} \ge \dfrac{1}{2}\)

\(\begin{array}{l} \Rightarrow \dfrac{{C{M^2} + D{M^2}}}{{CM + DM}} \ge \dfrac{1}{2}\left( {CM + DM} \right) = \dfrac{1}{2}CD \ge \dfrac{1}{2}AB = R\\ \Rightarrow {S_{ACM}} + {S_{BDM}} = R.\dfrac{{C{M^2} + D{M^2}}}{{CM + DM}} \ge {R^2}\end{array}\)

Dấu bằng xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}CM = DM\\CD = AB\end{array} \right.\) , khi đó M là điểm chính giữa của cung AB.

Vậy \({\left( {{S_{ACM}} + {S_{BDM}}} \right)_{\min }} = {R^2} \Leftrightarrow M\) là điểm chính giữa của cung AB.

Câu 6.

a) Cho hàm số \(y = f\left( x \right)\) với \(f\left( x \right)\) là một biểu thức đại số xác định với mọi số thực \(x \ne 0\) . Biết rằng: \(f\left( x \right) + 3f\left( {\dfrac{1}{x}} \right) = {x^2}\left( {\forall x \ne 0} \right).\) Tính \(f\left( 2 \right)\)

Ta có:

\(\begin{array}{l}f\left( x \right) + 3f\left( {\dfrac{1}{x}} \right) = {x^2}\left( {\forall x \ne 0} \right).\\ \Rightarrow \left\{ \begin{array}{l}f\left( 2 \right) + 3f\left( {\dfrac{1}{2}} \right) = {2^2} = 4\\f\left( {\dfrac{1}{2}} \right) + 3f\left( 2 \right) = {\left( {\dfrac{1}{2}} \right)^2} = \dfrac{1}{4}\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}f\left( 2 \right) + 3f\left( {\dfrac{1}{2}} \right) = 4\\3f\left( {\dfrac{1}{2}} \right) + 9f\left( 2 \right) = \dfrac{3}{4}\end{array} \right.\\ \Rightarrow 8f\left( 2 \right) = - \dfrac{{13}}{4} \Rightarrow f\left( 2 \right) = - \dfrac{{13}}{{32}}\end{array}\)

b) Cho ba số nguyên dương \(a,b,c\) đôi một khác nhau và thỏa mãn: \(a\) là ước của \(b + c + bc\), \(b\) là ước của \(c + a + ca\) và \(c\) là ước của \(a + b + ab\) . Chứng minh \(a,b,c\) không đồng thời là các số nguyên tố.

Bạn đang khám phá nội dung Đề số 21 - Đề thi vào lớp 10 môn Toán trong chuyên mục sgk toán 9 trên nền tảng học toán. Được biên soạn chuyên sâu và bám sát chương trình sách giáo khoa hiện hành, bộ bài tập toán trung học cơ sở này cam kết tối ưu hóa toàn diện quá trình ôn luyện, củng cố kiến thức Toán lớp 9 cho học sinh, đặc biệt là chuẩn bị cho các kỳ thi quan trọng, thông qua phương pháp tiếp cận trực quan và mang lại hiệu quả học tập vượt trội.
Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên MonToan.com.vn bằng cách gửi về:
Facebook: MÔN TOÁN
Email: montoanmath@gmail.com

Bài viết liên quan

Đề số 21 - Đề thi vào lớp 10 môn Toán: Phân tích chi tiết và hướng dẫn giải

Đề số 21 là một trong những đề thi thử được đánh giá cao về độ khó và tính bao quát kiến thức. Đề thi này thường bao gồm các dạng bài tập thuộc các chủ đề chính sau:

  • Đại số: Các bài toán về phương trình bậc hai, hệ phương trình, bất phương trình, hàm số bậc hai.
  • Hình học: Các bài toán về tam giác, đường tròn, hệ thức lượng trong tam giác vuông, diện tích hình học.
  • Số học: Các bài toán về số nguyên tố, chia hết, ước chung lớn nhất, bội chung nhỏ nhất.

Cấu trúc đề thi và trọng tâm ôn tập

Cấu trúc đề thi vào lớp 10 môn Toán thường bao gồm hai phần chính:

  1. Phần trắc nghiệm: Thường chiếm khoảng 30-40% tổng số điểm, tập trung vào các kiến thức cơ bản và khả năng vận dụng nhanh.
  2. Phần tự luận: Thường chiếm khoảng 60-70% tổng số điểm, đòi hỏi học sinh phải trình bày lời giải chi tiết, rõ ràng và logic.

Để đạt kết quả tốt trong kỳ thi, học sinh cần tập trung ôn tập các kiến thức trọng tâm sau:

  • Nắm vững các định nghĩa, định lý, công thức toán học.
  • Luyện tập giải các bài tập từ cơ bản đến nâng cao.
  • Rèn luyện kỹ năng giải quyết vấn đề và tư duy logic.
  • Quản lý thời gian hiệu quả trong quá trình làm bài.

Hướng dẫn giải một số bài toán điển hình trong đề số 21

Dưới đây là hướng dẫn giải một số bài toán điển hình thường xuất hiện trong Đề số 21:

Bài toán 1: Giải phương trình bậc hai

Phương trình bậc hai có dạng ax2 + bx + c = 0. Để giải phương trình này, ta có thể sử dụng công thức nghiệm:

x = (-b ± √(b2 - 4ac)) / 2a

Lưu ý: Nếu b2 - 4ac < 0, phương trình vô nghiệm.

Bài toán 2: Tính diện tích tam giác

Diện tích tam giác có thể được tính theo nhiều công thức khác nhau, tùy thuộc vào thông tin đã cho:

  • S = (1/2) * đáy * chiều cao
  • S = (1/2) * ab * sinC (với a, b là độ dài hai cạnh và C là góc xen giữa hai cạnh đó)
  • Công thức Heron: S = √(p(p-a)(p-b)(p-c)) (với p là nửa chu vi của tam giác)

Bài toán 3: Chứng minh hệ thức lượng trong tam giác vuông

Trong một tam giác vuông, hệ thức lượng giữa các cạnh được biểu diễn như sau:

  • a2 + b2 = c2 (định lý Pitago)
  • ab = ch (h là đường cao hạ từ đỉnh góc vuông xuống cạnh huyền)
  • a2 = ch' (h' là hình chiếu của cạnh a lên cạnh huyền)
  • b2 = ch'' (h'' là hình chiếu của cạnh b lên cạnh huyền)

Luyện tập và nâng cao kỹ năng

Để nâng cao kỹ năng giải toán, học sinh nên:

  • Giải nhiều đề thi thử khác nhau.
  • Tìm hiểu các phương pháp giải toán mới.
  • Tham gia các khóa học luyện thi vào lớp 10.
  • Học hỏi kinh nghiệm từ các bạn học giỏi.

Kết luận

Đề số 21 - Đề thi vào lớp 10 môn Toán là một công cụ hữu ích để học sinh chuẩn bị cho kỳ thi quan trọng này. Bằng cách nắm vững kiến thức, luyện tập thường xuyên và áp dụng các phương pháp giải toán hiệu quả, các em sẽ tự tin chinh phục kỳ thi và đạt được kết quả tốt nhất.

Chủ đềMức độ quan trọng
Đại sốCao
Hình họcCao
Số họcTrung bình
Nguồn: montoan.com.vn

Tài liệu, đề thi và đáp án Toán 9

Tài liệu, đề thi và đáp án Toán 9