Montoan.com.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 5 trang 41, 42 sách giáo khoa Toán 12 tập 2 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp các em học sinh nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.
Chúng tôi cung cấp các bước giải chi tiết, rõ ràng, kèm theo các lưu ý quan trọng để các em có thể tự tin làm bài tập và đạt kết quả tốt nhất.
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) có phương trình \(Ax + By + Cz + D = 0\) và điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\). Gọi \({M_1}\left( {{x_1};{y_1};{z_1}} \right)\) là hình chiếu vuông góc của \({M_0}\) trên \(\left( \alpha \right)\)(hình dưới đây).
Trả lời câu hỏi Thực hành 7 trang 42 SGK Toán 12 Chân trời sáng tạo
a) Tính chiều cao của hình chóp \(O.MNP\) với toạ độ các đỉnh \(O\left( {0;0;0} \right)\), \(M\left( {2;1;2} \right)\), \(N\left( {3;3;3} \right)\), \(P\left( {4;5;6} \right)\).
b) Tính khoảng cách giữa hai mặt phẳng song song \(\left( R \right):8x + 6y + 70 = 0\) và \(\left( S \right):16x + 12y - 2 = 0\)
Phương pháp giải:
a) Chiều cao của hình chóp \(O.MNP\) chính là khoảng cách từ điểm \(O\) tới mặt phẳng \(\left( {MNP} \right)\). Viết phương trình mặt phẳng \(\left( {MNP} \right)\), từ đó tính khoảng cách từ điểm \(O\) tới mặt phẳng \(\left( {MNP} \right)\).
b) Khoảng cách giữa hai mặt phẳng song song bằng khoảng cách từ một điểm nằm trên mặt phẳng này tới mặt phẳng kia. Chọn một điểm nằm trên mặt phẳng \(\left( R \right)\) và tính khoảng cách từ điểm đó tới mặt phẳng \(\left( S \right)\).
Lời giải chi tiết:
a) Chiều cao của hình chóp \(O.MNP\) chính là khoảng cách từ điểm
b) \(O\) tới mặt phẳng \(\left( {MNP} \right)\).
Mặt phẳng \(\left( {MNP} \right)\) đi qua ba điểm \(M\left( {2;1;2} \right)\), \(N\left( {3;3;3} \right)\), \(P\left( {4;5;6} \right)\) nên có một cặp vectơ chỉ phương là \(\overrightarrow {MN} = \left( {1;2;1} \right)\) và \(\overrightarrow {MP} = \left( {2;4;4} \right)\).
Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( {MNP} \right)\) là:
\(\vec n = \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( {2.4 - 1.4;1.2 - 1.4;1.4 - 2.2} \right) = \left( {4; - 2;0} \right)\)
Mặt phẳng \(\left( {MNP} \right)\) đi qua \(M\left( {2;1;2} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {4; - 2;0} \right)\) nên có phương trình là \(4\left( {x - 2} \right) - 2\left( {y - 1} \right) + 0\left( {z - 2} \right) = 0 \Leftrightarrow 4x - 2y - 6 = 0\).
Khoảng cách từ điểm \(O\) tới mặt phẳng \(\left( {MNP} \right)\) là:
\(d\left( {O,\left( {MNP} \right)} \right) = \frac{{\left| {4.0 - 2.0 - 6} \right|}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2}} }} = \frac{6}{{2\sqrt 5 }} = \frac{{3\sqrt 5 }}{5}\).
b) Chọn điểm \(M\left( {0; - \frac{{35}}{3};0} \right)\) nằm trên mặt phẳng \(\left( R \right)\).
Khoảng cách giữa hai mặt phẳng song song \(\left( R \right)\) và \(\left( S \right)\), chính là khoảng cách từ \(M\left( {0; - \frac{{35}}{3};0} \right)\) đến \(\left( S \right)\), bằng:
\(d\left( {\left( R \right),\left( S \right)} \right) = d\left( {M,\left( S \right)} \right) = \frac{{\left| {16.0 + 12.\frac{{ - 35}}{3} - 2} \right|}}{{\sqrt {{{16}^2} + {{12}^2}} }} = \frac{{71}}{{10}}\)
Trả lời câu hỏi Hoạt động 9 trang 41 SGK Toán 12 Chân trời sáng tạo
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) có phương trình \(Ax + By + Cz + D = 0\) và điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\). Gọi \({M_1}\left( {{x_1};{y_1};{z_1}} \right)\) là hình chiếu vuông góc của \({M_0}\) trên \(\left( \alpha \right)\)(hình dưới đây).
a) Nêu nhận xét về phương của hai vectơ \(\overrightarrow {{M_1}{M_0}} = \left( {{x_0} - {x_1};{y_0} - {y_1};{z_0} - {z_1}} \right)\) và \(\vec n = \left( {A;B;C} \right)\)
b) Tính \(\overrightarrow {{M_1}{M_0}} .\vec n\) theo \(A\), \(B\), \(C\), \(D\) và toạ độ của \({M_0}\).
c) Giải thích tại sao ta lại có đẳng thức \(\left| {\overrightarrow {{M_1}{M_0}} .\vec n} \right| = \left| {\overrightarrow {{M_1}{M_0}} } \right|.\left| {\vec n} \right|\).
d) Từ các kết quả trên suy ra cách tính \(d\left( {{M_0},\left( \alpha \right)} \right) = \left| {\overrightarrow {{M_1}{M_0}} } \right| = \frac{{\left| {\overrightarrow {{M_1}{M_0}} .\vec n} \right|}}{{\left| {\vec n} \right|}}\).
Phương pháp giải:
a) Xét vị trí tương đối của giá của hai vectơ \(\overrightarrow {{M_1}{M_0}} \) và \(\vec n\) và kết luận.
b) Sử dụng công thức tích vô hướng để tính tích \(\overrightarrow {{M_1}{M_0}} .\vec n\).
c) Sử dụng công thức nhân của hai vectơ \(\vec a.\vec b = \left| {\vec a} \right|.\left| {\vec b} \right|.\cos \left( {\vec a,\vec b} \right)\) để chứng minh rằng \(\left| {\overrightarrow {{M_1}{M_0}} .\vec n} \right| = \left| {\overrightarrow {{M_1}{M_0}} } \right|.\left| {\vec n} \right|\).
d) Từ câu c, rút ra nhận xét.
Lời giải chi tiết:
a) Vectơ pháp tuyến \(\vec n\) có giá vuông góc với \(\left( \alpha \right)\). Do \({M_1}\) là hình chiếu của \({M_0}\) trên \(\left( \alpha \right)\) nên \({M_1}{M_0} \bot \left( \alpha \right)\), suy ra \(\overrightarrow {{M_1}{M_0}} \) có giá vuông góc với \(\left( \alpha \right)\).
Hai vectơ \(\overrightarrow {{M_1}{M_0}} \) và \(\vec n\) cùng có giá vuông góc với \(\left( \alpha \right)\), nên chúng là hai vectơ cùng phương.
b) Ta có:
\(\overrightarrow {{M_1}{M_0}} .\vec n = A\left( {{x_0} - {x_1}} \right) + B\left( {{y_0} - {y_1}} \right) + C\left( {{z_0} - {z_1}} \right) = A{x_0} + B{y_0} + C{z_0} - \left( {A{x_1} + B{y_1} + C{z_1}} \right)\)
Do \({M_1} \in \left( \alpha \right)\) nên \(A{x_1} + B{y_1} + C{z_1} + D = 0 \Rightarrow D = - \left( {A{x_1} + B{y_1} + C{z_1}} \right)\).
Như vậy \(\overrightarrow {{M_1}{M_0}} .\vec n = A{x_0} + B{y_0} + C{z_0} + D\).
c) Ta có \(\overrightarrow {{M_1}{M_0}} .\vec n = \left| {\overrightarrow {{M_1}{M_0}} } \right|.\left| {\vec n} \right|.\cos \left( {\overrightarrow {{M_1}{M_0}} ,\vec n} \right)\).
Do \(\overrightarrow {{M_1}{M_0}} \) và \(\vec n\) cùng phương, nên góc giữa hai vectơ này bằng \({0^o}\) (cùng chiều) hoặc \({180^o}\) (ngược chiều).
Dễ thấy rằng \(\cos {0^o} = 1\) và \(\cos {180^o} = - 1\). Suy ra \(\left| {\cos {0^o}} \right| = \left| {\cos {{180}^o}} \right| = 1\), điều này có nghĩa là \(\left| {\cos \left( {\overrightarrow {{M_1}{M_0}} ,\vec n} \right)} \right| = 1\).
Như vậy, \[\left| {\overrightarrow {{M_1}{M_0}} .\vec n} \right| = \left| {\overrightarrow {{M_1}{M_0}} } \right|.\left| {\vec n} \right|.\left| {\cos \left( {\overrightarrow {{M_1}{M_0}} ,\vec n} \right)} \right| = \left| {\overrightarrow {{M_1}{M_0}} } \right|.\left| {\vec n} \right|\].
d) Ta có \({M_1}{M_0} \bot \left( \alpha \right)\) và \({M_1} \in \left( \alpha \right)\) nên khoảng cách từ \({M_0}\) đến mặt phẳng \(\left( \alpha \right)\) là đoạn thẳng \({M_1}{M_0}\). Suy ra \(\left| {\overrightarrow {{M_1}{M_0}} } \right| = {M_1}{M_0} = d\left( {{M_0},\left( \alpha \right)} \right)\).
Vậy ta có \(d\left( {{M_0},\left( \alpha \right)} \right) = \left| {\overrightarrow {{M_1}{M_0}} } \right| = \frac{{\left| {\overrightarrow {{M_1}{M_0}} .\vec n} \right|}}{{\left| {\vec n} \right|}}\).
Trả lời câu hỏi Vận dụng 6 trang 42 SGK Toán 12 Chân trời sáng tạo
Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\sqrt 2 \), chiều cao bằng \(2a\) và \(O\) là tâm của đáy. Bằng cách thiết lập hệ trục toạ độ \(Oxyz\) như hình dưới đây, tính khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {SAB} \right)\).
Phương pháp giải:
Xác định toạ độ các điểm \(C\), \(S\), \(A\), \(B\), sau đó viết phương trình mặt phẳng \(\left( {SAB} \right)\) rồi sử dụng công thức tính khoảng cách để tính khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {SAB} \right)\).
Lời giải chi tiết:
Hình vuông \(ABCD\) có cạnh \(a\sqrt 2 \), nên đường chéo có độ dài \(\sqrt {{{\left( {a\sqrt 2 } \right)}^2} + {{\left( {a\sqrt 2 } \right)}^2}} = 2a\). Suy ra \(OA = OB = OC = \frac{{2a}}{2} = a\).
Chiều cao của hình chóp đều là \(2a\), nên \(SO = 2a\)
Điểm \(A\) nằm trên trục \(Ox\), \(OA = a\) và \({x_A} < 0\) nên ta có \(A\left( { - a;0;0} \right)\).
Điểm \(B\) nằm trên trục \(Oy\), \(OB = a\) và \({y_B} > 0\) nên ta có \(B\left( {0;a;0} \right)\).
Điểm \(C\) nằm trên trục \(Ox\), \(OC = a\) và \({x_C} > 0\) nên ta có \(C\left( {a;0;0} \right)\).
Điểm \(S\) nằm trên trục \(Oz\), \(OS = 2a\) và \({z_S} > 0\) nên ta có \(S\left( {0;0;2a} \right)\).
Mặt phẳng \(\left( {SAB} \right)\) đi qua \(A\left( { - a;0;0} \right)\), \(B\left( {0;a;0} \right)\), \(S\left( {0;0;2a} \right)\) nên có phương trình là \(\frac{x}{{ - a}} + \frac{y}{a} + \frac{z}{{2a}} = 1 \Leftrightarrow - 2x + 2y + z = 2a \Leftrightarrow - 2x + 2y + z - 2a = 0\).
Khoảng cách từ \(C\left( {a;0;0} \right)\) đến mặt phẳng \(\left( {SAB} \right)\) là:
\(d\left( {C,\left( {SAB} \right)} \right) = \frac{{\left| { - 2.a + 2.0 + 0 - 2a} \right|}}{{\sqrt {{{\left( { - 2} \right)}^2} + {2^2} + {1^2}} }} = \frac{{4a}}{3}\)
Trả lời câu hỏi Hoạt động 9 trang 41 SGK Toán 12 Chân trời sáng tạo
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) có phương trình \(Ax + By + Cz + D = 0\) và điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\). Gọi \({M_1}\left( {{x_1};{y_1};{z_1}} \right)\) là hình chiếu vuông góc của \({M_0}\) trên \(\left( \alpha \right)\)(hình dưới đây).
a) Nêu nhận xét về phương của hai vectơ \(\overrightarrow {{M_1}{M_0}} = \left( {{x_0} - {x_1};{y_0} - {y_1};{z_0} - {z_1}} \right)\) và \(\vec n = \left( {A;B;C} \right)\)
b) Tính \(\overrightarrow {{M_1}{M_0}} .\vec n\) theo \(A\), \(B\), \(C\), \(D\) và toạ độ của \({M_0}\).
c) Giải thích tại sao ta lại có đẳng thức \(\left| {\overrightarrow {{M_1}{M_0}} .\vec n} \right| = \left| {\overrightarrow {{M_1}{M_0}} } \right|.\left| {\vec n} \right|\).
d) Từ các kết quả trên suy ra cách tính \(d\left( {{M_0},\left( \alpha \right)} \right) = \left| {\overrightarrow {{M_1}{M_0}} } \right| = \frac{{\left| {\overrightarrow {{M_1}{M_0}} .\vec n} \right|}}{{\left| {\vec n} \right|}}\).
Phương pháp giải:
a) Xét vị trí tương đối của giá của hai vectơ \(\overrightarrow {{M_1}{M_0}} \) và \(\vec n\) và kết luận.
b) Sử dụng công thức tích vô hướng để tính tích \(\overrightarrow {{M_1}{M_0}} .\vec n\).
c) Sử dụng công thức nhân của hai vectơ \(\vec a.\vec b = \left| {\vec a} \right|.\left| {\vec b} \right|.\cos \left( {\vec a,\vec b} \right)\) để chứng minh rằng \(\left| {\overrightarrow {{M_1}{M_0}} .\vec n} \right| = \left| {\overrightarrow {{M_1}{M_0}} } \right|.\left| {\vec n} \right|\).
d) Từ câu c, rút ra nhận xét.
Lời giải chi tiết:
a) Vectơ pháp tuyến \(\vec n\) có giá vuông góc với \(\left( \alpha \right)\). Do \({M_1}\) là hình chiếu của \({M_0}\) trên \(\left( \alpha \right)\) nên \({M_1}{M_0} \bot \left( \alpha \right)\), suy ra \(\overrightarrow {{M_1}{M_0}} \) có giá vuông góc với \(\left( \alpha \right)\).
Hai vectơ \(\overrightarrow {{M_1}{M_0}} \) và \(\vec n\) cùng có giá vuông góc với \(\left( \alpha \right)\), nên chúng là hai vectơ cùng phương.
b) Ta có:
\(\overrightarrow {{M_1}{M_0}} .\vec n = A\left( {{x_0} - {x_1}} \right) + B\left( {{y_0} - {y_1}} \right) + C\left( {{z_0} - {z_1}} \right) = A{x_0} + B{y_0} + C{z_0} - \left( {A{x_1} + B{y_1} + C{z_1}} \right)\)
Do \({M_1} \in \left( \alpha \right)\) nên \(A{x_1} + B{y_1} + C{z_1} + D = 0 \Rightarrow D = - \left( {A{x_1} + B{y_1} + C{z_1}} \right)\).
Như vậy \(\overrightarrow {{M_1}{M_0}} .\vec n = A{x_0} + B{y_0} + C{z_0} + D\).
c) Ta có \(\overrightarrow {{M_1}{M_0}} .\vec n = \left| {\overrightarrow {{M_1}{M_0}} } \right|.\left| {\vec n} \right|.\cos \left( {\overrightarrow {{M_1}{M_0}} ,\vec n} \right)\).
Do \(\overrightarrow {{M_1}{M_0}} \) và \(\vec n\) cùng phương, nên góc giữa hai vectơ này bằng \({0^o}\) (cùng chiều) hoặc \({180^o}\) (ngược chiều).
Dễ thấy rằng \(\cos {0^o} = 1\) và \(\cos {180^o} = - 1\). Suy ra \(\left| {\cos {0^o}} \right| = \left| {\cos {{180}^o}} \right| = 1\), điều này có nghĩa là \(\left| {\cos \left( {\overrightarrow {{M_1}{M_0}} ,\vec n} \right)} \right| = 1\).
Như vậy, \[\left| {\overrightarrow {{M_1}{M_0}} .\vec n} \right| = \left| {\overrightarrow {{M_1}{M_0}} } \right|.\left| {\vec n} \right|.\left| {\cos \left( {\overrightarrow {{M_1}{M_0}} ,\vec n} \right)} \right| = \left| {\overrightarrow {{M_1}{M_0}} } \right|.\left| {\vec n} \right|\].
d) Ta có \({M_1}{M_0} \bot \left( \alpha \right)\) và \({M_1} \in \left( \alpha \right)\) nên khoảng cách từ \({M_0}\) đến mặt phẳng \(\left( \alpha \right)\) là đoạn thẳng \({M_1}{M_0}\). Suy ra \(\left| {\overrightarrow {{M_1}{M_0}} } \right| = {M_1}{M_0} = d\left( {{M_0},\left( \alpha \right)} \right)\).
Vậy ta có \(d\left( {{M_0},\left( \alpha \right)} \right) = \left| {\overrightarrow {{M_1}{M_0}} } \right| = \frac{{\left| {\overrightarrow {{M_1}{M_0}} .\vec n} \right|}}{{\left| {\vec n} \right|}}\).
Trả lời câu hỏi Thực hành 7 trang 42 SGK Toán 12 Chân trời sáng tạo
a) Tính chiều cao của hình chóp \(O.MNP\) với toạ độ các đỉnh \(O\left( {0;0;0} \right)\), \(M\left( {2;1;2} \right)\), \(N\left( {3;3;3} \right)\), \(P\left( {4;5;6} \right)\).
b) Tính khoảng cách giữa hai mặt phẳng song song \(\left( R \right):8x + 6y + 70 = 0\) và \(\left( S \right):16x + 12y - 2 = 0\)
Phương pháp giải:
a) Chiều cao của hình chóp \(O.MNP\) chính là khoảng cách từ điểm \(O\) tới mặt phẳng \(\left( {MNP} \right)\). Viết phương trình mặt phẳng \(\left( {MNP} \right)\), từ đó tính khoảng cách từ điểm \(O\) tới mặt phẳng \(\left( {MNP} \right)\).
b) Khoảng cách giữa hai mặt phẳng song song bằng khoảng cách từ một điểm nằm trên mặt phẳng này tới mặt phẳng kia. Chọn một điểm nằm trên mặt phẳng \(\left( R \right)\) và tính khoảng cách từ điểm đó tới mặt phẳng \(\left( S \right)\).
Lời giải chi tiết:
a) Chiều cao của hình chóp \(O.MNP\) chính là khoảng cách từ điểm
b) \(O\) tới mặt phẳng \(\left( {MNP} \right)\).
Mặt phẳng \(\left( {MNP} \right)\) đi qua ba điểm \(M\left( {2;1;2} \right)\), \(N\left( {3;3;3} \right)\), \(P\left( {4;5;6} \right)\) nên có một cặp vectơ chỉ phương là \(\overrightarrow {MN} = \left( {1;2;1} \right)\) và \(\overrightarrow {MP} = \left( {2;4;4} \right)\).
Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( {MNP} \right)\) là:
\(\vec n = \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( {2.4 - 1.4;1.2 - 1.4;1.4 - 2.2} \right) = \left( {4; - 2;0} \right)\)
Mặt phẳng \(\left( {MNP} \right)\) đi qua \(M\left( {2;1;2} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {4; - 2;0} \right)\) nên có phương trình là \(4\left( {x - 2} \right) - 2\left( {y - 1} \right) + 0\left( {z - 2} \right) = 0 \Leftrightarrow 4x - 2y - 6 = 0\).
Khoảng cách từ điểm \(O\) tới mặt phẳng \(\left( {MNP} \right)\) là:
\(d\left( {O,\left( {MNP} \right)} \right) = \frac{{\left| {4.0 - 2.0 - 6} \right|}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2}} }} = \frac{6}{{2\sqrt 5 }} = \frac{{3\sqrt 5 }}{5}\).
b) Chọn điểm \(M\left( {0; - \frac{{35}}{3};0} \right)\) nằm trên mặt phẳng \(\left( R \right)\).
Khoảng cách giữa hai mặt phẳng song song \(\left( R \right)\) và \(\left( S \right)\), chính là khoảng cách từ \(M\left( {0; - \frac{{35}}{3};0} \right)\) đến \(\left( S \right)\), bằng:
\(d\left( {\left( R \right),\left( S \right)} \right) = d\left( {M,\left( S \right)} \right) = \frac{{\left| {16.0 + 12.\frac{{ - 35}}{3} - 2} \right|}}{{\sqrt {{{16}^2} + {{12}^2}} }} = \frac{{71}}{{10}}\)
Trả lời câu hỏi Vận dụng 6 trang 42 SGK Toán 12 Chân trời sáng tạo
Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\sqrt 2 \), chiều cao bằng \(2a\) và \(O\) là tâm của đáy. Bằng cách thiết lập hệ trục toạ độ \(Oxyz\) như hình dưới đây, tính khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {SAB} \right)\).
Phương pháp giải:
Xác định toạ độ các điểm \(C\), \(S\), \(A\), \(B\), sau đó viết phương trình mặt phẳng \(\left( {SAB} \right)\) rồi sử dụng công thức tính khoảng cách để tính khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {SAB} \right)\).
Lời giải chi tiết:
Hình vuông \(ABCD\) có cạnh \(a\sqrt 2 \), nên đường chéo có độ dài \(\sqrt {{{\left( {a\sqrt 2 } \right)}^2} + {{\left( {a\sqrt 2 } \right)}^2}} = 2a\). Suy ra \(OA = OB = OC = \frac{{2a}}{2} = a\).
Chiều cao của hình chóp đều là \(2a\), nên \(SO = 2a\)
Điểm \(A\) nằm trên trục \(Ox\), \(OA = a\) và \({x_A} < 0\) nên ta có \(A\left( { - a;0;0} \right)\).
Điểm \(B\) nằm trên trục \(Oy\), \(OB = a\) và \({y_B} > 0\) nên ta có \(B\left( {0;a;0} \right)\).
Điểm \(C\) nằm trên trục \(Ox\), \(OC = a\) và \({x_C} > 0\) nên ta có \(C\left( {a;0;0} \right)\).
Điểm \(S\) nằm trên trục \(Oz\), \(OS = 2a\) và \({z_S} > 0\) nên ta có \(S\left( {0;0;2a} \right)\).
Mặt phẳng \(\left( {SAB} \right)\) đi qua \(A\left( { - a;0;0} \right)\), \(B\left( {0;a;0} \right)\), \(S\left( {0;0;2a} \right)\) nên có phương trình là \(\frac{x}{{ - a}} + \frac{y}{a} + \frac{z}{{2a}} = 1 \Leftrightarrow - 2x + 2y + z = 2a \Leftrightarrow - 2x + 2y + z - 2a = 0\).
Khoảng cách từ \(C\left( {a;0;0} \right)\) đến mặt phẳng \(\left( {SAB} \right)\) là:
\(d\left( {C,\left( {SAB} \right)} \right) = \frac{{\left| { - 2.a + 2.0 + 0 - 2a} \right|}}{{\sqrt {{{\left( { - 2} \right)}^2} + {2^2} + {1^2}} }} = \frac{{4a}}{3}\)
Mục 5 trong SGK Toán 12 tập 2 chương trình Chân trời sáng tạo tập trung vào việc ôn tập chương trình Giải tích. Cụ thể, các bài tập trong mục này thường xoay quanh các chủ đề như đạo hàm, tích phân, ứng dụng của đạo hàm và tích phân trong việc giải quyết các bài toán thực tế. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập trong chương này là vô cùng quan trọng, không chỉ cho kỳ thi THPT Quốc gia mà còn là nền tảng cho việc học tập nâng cao sau này.
Để giúp các em học sinh hiểu rõ hơn về nội dung và phương pháp giải các bài tập trong mục 5 trang 41, 42 SGK Toán 12 tập 2, chúng ta sẽ đi vào phân tích chi tiết từng bài tập:
Bài tập này yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán liên quan đến tìm đạo hàm, xét tính đơn điệu của hàm số, tìm cực trị, và vẽ đồ thị hàm số. Ví dụ, một bài tập có thể yêu cầu tìm đạo hàm của hàm số f(x) = x^3 - 3x^2 + 2x - 1. Để giải bài tập này, học sinh cần áp dụng quy tắc tính đạo hàm của tổng, hiệu, tích, và thương của các hàm số.
Bài tập này tập trung vào việc ôn tập các kiến thức về tích phân bất định, tích phân xác định, và ứng dụng của tích phân để tính diện tích hình phẳng, thể tích vật thể. Ví dụ, một bài tập có thể yêu cầu tính tích phân xác định của hàm số f(x) = 2x + 1 trên đoạn [0, 2]. Để giải bài tập này, học sinh cần áp dụng định nghĩa của tích phân xác định và các tính chất của tích phân.
Bài tập này yêu cầu học sinh vận dụng các kiến thức về đạo hàm và tích phân để giải quyết các bài toán thực tế, chẳng hạn như bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng cho trước, bài toán tính diện tích hình phẳng giới hạn bởi các đường cong, hoặc bài toán tính thể tích vật thể tròn xoay. Ví dụ, một bài tập có thể yêu cầu tìm giá trị lớn nhất của hàm số f(x) = -x^2 + 4x - 3 trên đoạn [0, 3].
Để giải các bài tập trong mục 5 trang 41, 42 SGK Toán 12 tập 2 một cách hiệu quả, học sinh cần:
Học Toán 12 đòi hỏi sự kiên trì và nỗ lực. Hãy dành thời gian ôn tập bài cũ thường xuyên, làm bài tập đầy đủ, và tìm kiếm sự giúp đỡ từ giáo viên hoặc bạn bè khi gặp khó khăn. Đừng ngại đặt câu hỏi và thảo luận về các vấn đề chưa hiểu rõ. Chúc các em học tập tốt và đạt kết quả cao trong kỳ thi THPT Quốc gia!
Công thức | Mô tả |
---|---|
(u + v)' = u' + v' | Đạo hàm của tổng |
(u * v)' = u'v + uv' | Đạo hàm của tích |
∫f(x) dx = F(x) + C | Tích phân bất định |