1. Môn Toán
  2. Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo

Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo

Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo

Chào mừng bạn đến với bài học về lý thuyết Phương trình mặt phẳng trong chương trình Toán 12 Chân trời sáng tạo tại montoan.com.vn. Bài học này sẽ cung cấp cho bạn những kiến thức cơ bản và quan trọng nhất về phương trình mặt phẳng trong không gian.

Chúng ta sẽ cùng nhau tìm hiểu về vectơ pháp tuyến, các dạng phương trình mặt phẳng, và cách xác định một mặt phẳng trong không gian.

1. Vecto pháp tuyến và cặp vecto chỉ phương của mặt phẳng Vecto pháp tuyến

1. Vecto pháp tuyến và cặp vecto chỉ phương của mặt phẳng

Vecto pháp tuyến

Vecto \(\overrightarrow n \ne \overrightarrow 0 \) được gọi là vecto pháp tuyến của mặt phẳng \(\left( \alpha \right)\) nếu giá của \(\overrightarrow n \) vuông góc với \(\left( \alpha \right)\).

Cặp vecto chỉ phương

Cho mặt phẳng \(\left( \alpha \right)\). Nếu hai vecto \(\overrightarrow a ,\overrightarrow b \) không cùng phương, có giá song song hoặc nằm trong \(\left( \alpha \right)\) thì \(\overrightarrow a ,\overrightarrow b \) được gọi là cặp vecto chỉ phương của \(\left( \alpha \right)\).

Ví dụ: Cho hình lập phương ABCD.A’B’C’D’.

a) Tìm một cặp vecto chỉ phương của mặt phẳng (ABCD).

b) Tìm một cặp vecto pháp

tuyến của mặt phẳng (ABCD).

Giải:

Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo 1

a) Vì \(\overrightarrow {AB} \) và \(\overrightarrow {AD} \) không cùng phương và có giá nằm trong mặt phẳng (ABCD) nên \(\overrightarrow {AB} \), \(\overrightarrow {AD} \) là một cặp vecto pháp tuyến của (ABCD).

b) Vì \(AA'\)\( \bot \)(ABCD) nên \(\overrightarrow {AA'} \) là một vecto pháp tuyến của (ABCD).

2. Xác định vecto pháp tuyến của mặt phẳng khi biết cặp vecto chỉ phương

Trong không gian Oxyz, nếu mặt phẳng \(\left( \alpha \right)\) nhận hai vecto \(\overrightarrow a = ({a_1};{a_2};{a_3})\), \(\overrightarrow b = ({b_1};{b_2};{b_3})\) làm cặp vecto chỉ phương thì \(\left( \alpha \right)\) nhận vecto

\(\overrightarrow n = ({a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1})\)

làm vecto pháp tuyến.

Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo 2

Vecto \(\overrightarrow n = ({a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1})\) còn được gọi là tích có hướng của hai vecto \(\overrightarrow a = ({a_1};{a_2};{a_3})\) và \(\overrightarrow b = ({b_1};{b_2};{b_3})\), kí hiệu là \(\left[ {\overrightarrow a ,\overrightarrow b } \right]\).

Biểu thức \({a_1}{b_2} - {a_2}{b_1}\) thường được kí hiệu là \(\left| {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}\\{{b_1}}&{{b_2}}\end{array}} \right|\).

Nếu \(\overrightarrow a ,\overrightarrow b \) cùng phương \( \Leftrightarrow \left[ {\overrightarrow a ,\overrightarrow b } \right] = 0\).

Ví dụ: Cho mặt phẳng (P) nhận \(\overrightarrow a = (1;2;3)\), \(\overrightarrow b = (4;1;5)\) làm cặp vecto chỉ phương. Tìm một vecto pháp tuyến của (P).

Giải: Ta có tích có hướng của hai vecto \(\overrightarrow a \), \(\overrightarrow b \) là

\(\left[ {\overrightarrow a ,\overrightarrow b } \right] = (2.5 - 3.1;3.4 - 1.5;1.1 - 2.4) = (7;7; - 7)\).

Do đó, mặt phẳng (P) nhận \(\overrightarrow n = \frac{1}{7}\left[ {\overrightarrow a ,\overrightarrow b } \right] = (1;1; - 1)\) làm một vecto pháp tuyến.

3. Phương trình tổng quát của mặt phẳng

Khái niệm phương trình tổng quát của mặt phẳng

Trong không gian Oxyz, mỗi mặt phẳng đều có phương trình dạng Ax + By + Cz + D = 0, trong đó A, B, C không đồng thời bằng 0, được gọi là phương trình tổng quát của mặt phẳng đó.

Mỗi phương trình Ax + By + Cz + D = 0 (A, B, C không đồng thời bằng 0) đều xác định một mặt phẳng nhận \(\overrightarrow n = (A;B;C)\) làm vecto pháp tuyến.

Cho mặt phẳng có phương trình tổng quát là Ax + By + Cz + D = 0 . Khi đó \(N({x_0};{y_0};{z_0}) \in (\alpha ) \Leftrightarrow A{x_0} + B{y_0} + C{z_0} + D = 0\).

Ví dụ: Cho hai mặt phẳng (P), (Q) có phương trình tổng quát là

(P): \(3x - 5y + 7z = 0\) và (Q): \(x + y - 2 = 0\).

a) Tìm một vecto pháp tuyến của mỗi mặt phẳng (P), (Q).

b) Tìm điểm thuộc mặt phẳng (P) trong số các điểm A(1;3;1), B(1;2;3).

Giải:

a) Mặt phẳng (P) có một vecto pháp tuyến là \(\overrightarrow n = (3; - 5;7)\).

Mặt phẳng (Q) có một vecto pháp tuyến là \(\overrightarrow n = (1;1;0)\).

b) Thay tọa độ điểm A vào phương trình của (P), ta được: 3.1 – 5.3 + 7.1 + 5 = 0.

Vậy A thuộc (P).

Thay tọa độ điểm B vào phương trình của (P), ta được: 3.1 – 5.2 + 7.3 + 5 = 19 \( \ne 0\).

Vậy B không thuộc (P).

Lập phương trình tổng quát của mặt phẳng đi qua một điểm và biết vecto pháp tuyến

Trong không gian Oxyz, nếu mặt phẳng \(\left( \alpha \right)\) đi qua điểm \({M_0}({x_0};{y_0};{z_0})\) và có vecto pháp tuyến \(\overrightarrow n = (A;B;C)\) có phương trình là:

\(A(x - {x_0}) + B(y - {y_0}) + C(z - {z_0}) = 0 \Leftrightarrow Ax + By + Cz + D = 0\), với \(D = - (A{x_0} + B{y_0} + C{z_0})\)

Ví dụ: Viết phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và có vecto pháp tuyến \(\overrightarrow n = (1;2;1)\).

Giải: Vì (P) đi qua điểm M(1;2;1) và có vecto pháp tuyến \(\overrightarrow n = (1;2;1)\) nên phương trình của (P) là \(1\left( {x--1} \right) + 2\left( {y--2} \right) + 1\left( {z--3} \right) = 0 \Leftrightarrow x + 2y - 8 = 0\).

Lập phương trình mặt phẳng đi qua một điểm và biết cặp vecto chỉ phương

Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi qua điểm M và biết cặp vecto chỉ phương \(\overrightarrow u \), \(\overrightarrow v \) có thể thực hiện theo các bước sau:

- Tìm vecto pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).

- Lập phương trình tổng quát của mặt phẳng đi qua M và biết vecto pháp tuyến \(\overrightarrow n \).

Ví dụ: Viết phương trình mặt phẳng (P) đi qua điểm N(4;0;1) và có cặp vecto chỉ phương là \(\overrightarrow a = (1;2;1)\), \(\overrightarrow b = (2;1;3)\).

Giải: (P) có cặp vecto chỉ phương là \(\overrightarrow a = (1;2;1)\), \(\overrightarrow b = (2;1;3)\), suy ra (P) có vecto pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow a ,\overrightarrow b } \right] = (2.3 - 1.1;1.2 - 1.3;1.1 - 2.2) = (5; - 1; - 3)\).

Phương trình của (P) là \(5(x - 4) - 1(y - 0) - 3(z - 1) = 0 \Leftrightarrow 5x - y - 3z - 17 = 0\).

Lập phương trình mặt phẳng đi qua ba điểm không thẳng hàng

Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi qua ba điểm không thẳng hàng A, B, C có thể thực hiện theo các bước sau:

- Tìm cặp vecto chỉ phương \(\overrightarrow {AB} ,\overrightarrow {AC} \).

- Tìm vecto pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\).

- Lập phương trình tổng quát của mặt phẳng đi qua A và biết vecto pháp tuyến \(\overrightarrow n \).

Ví dụ: Viết phương trình mặt phẳng (P) đi qua ba điểm A(1;1;1), B(1;2;2), C(4;1;0).

Giải: (P) đi qua ba điểm A(1;1;1), B(1;2;2), C(4;1;0) nên có cặp vecto chỉ phương là \(\overrightarrow {AB} = (0;1;1)\), \(\overrightarrow {AC} = (3;0; - 1)\), suy ra (P) có vecto pháp tuyến là

\(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = (1.( - 1) - 1.0;1.3 - 0.( - 1);0.0 - 1.3) = ( - 1;3; - 3)\).

Phương trình của (P) là \( - 1(x - 1) + 3(y - 1) - 3(z - 1) = 0 \Leftrightarrow x - 3y + 3z = 0\).

Phương trình mặt phẳng theo đoạn chắn

Phương trình mặt phẳng cắt ba trục tọa độ tại ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c \( \ne \) 0 có dạng \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\) gọi là phương trình mặt phẳng theo đoạn chắn.

4. Điều kiện để hai mặt phẳng song song, vuông góc

Điều kiện để hai mặt phẳng song song

Trong không gian Oxyz, cho hai mặt phẳng:

\(\left( \alpha \right):Ax + By + Cz + D = 0,\left( \beta \right):A'x + B'y + C'z + D' = 0,\) với hai vecto pháp tuyến \(\overrightarrow n = (A;B;C)\), \(\overrightarrow {n'} = (A';B';C')\) tương ứng. Khi đó:

\(\left( \alpha \right)//\left( \beta \right) \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {n'} = k\overrightarrow n \\D' \ne kD\end{array} \right.\) với k nào đó.

Ví dụ: Mặt phẳng (P): \(4x + 3y + z + 5 = 0\) song song với mặt phẳng nào sau đây?

a) (Q): \(8x + 6y + 2z + 9 = 0\);

b) (R): \(8x + 6y + 2z + 10 = 0\);

c) (S): \(4x + 2y + z + 5 = 0\).

Giải: Các mặt phẳng (P), (Q), (R), (S) có các vecto pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = (4;3;1)\), \(\overrightarrow {{n_2}} = (8;6;2)\), \(\overrightarrow {{n_3}} = (8;6;2)\), \(\overrightarrow {{n_4}} = (4;2;1)\).

a) Ta có \(\overrightarrow {{n_2}} = 2\overrightarrow {{n_1}} \), \(9 \ne 2.5\). Vậy (P)//(Q).

b) Ta có \(\overrightarrow {{n_3}} = 2\overrightarrow {{n_1}} \), \(10 \ne 2.5\). Vậy (P)\( \equiv \)(R).

c) Ta có \(\frac{4}{3} \ne \frac{3}{2}\) suy ra \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_4}} \) không cùng phương. Vậy (P) cắt (S).

Điều kiện để hai mặt phẳng vuông góc

Trong không gian Oxyz, cho hai mặt phẳng:

\(\left( \alpha \right):Ax + By + Cz + D = 0,\left( \beta \right):A'x + B'y + C'z + D' = 0,\) với hai vecto pháp tuyến \(\overrightarrow n = (A;B;C)\), \(\overrightarrow {n'} = (A';B';C')\) tương ứng. Khi đó:

\(\left( \alpha \right) \bot \left( \beta \right) \Leftrightarrow \overrightarrow n \bot \overrightarrow {n'} \Leftrightarrow AA' + BB' + CC' = 0\)

Ví dụ: Cho ba mặt phẳng (P), (Q), (R) có phương trình là

(P): \(x - 4y + 3z + 2 = 0\), (Q): \(4x + y + 88 = 0\), (R): \(x + y + z + 9 = 0\). Chứng minh rằng (P) ⊥ (Q), (P) ⊥ (R).

Giải: Các mặt phẳng (P), (Q), (R) có vecto pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = (1; - 4;3)\), \(\overrightarrow {{n_2}} = (4;1;0)\), \(\overrightarrow {{n_3}} = (1;1;1)\).

Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 1.4 + ( - 4).1 + 3.0 = 0\). Vậy (P) ⊥ (Q).

Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_3}} = 1.1 + ( - 4).1 + 3.1 = 0\). Vậy (P) ⊥ (R).

5. Khoảng cách từ một điểm đến một mặt phẳng

Trong không gian Oxyz, khoảng cách từ điểm \({M_0}({x_0};{y_0};{z_0})\) đến mặt phẳng (P): Ax + By + Cz + D = 0 là:

\(d(M,(P)) = \frac{{\left| {A{x_0}{\rm{ }} + {\rm{ }}B{y_0}{\rm{ }} + {\rm{ }}C{z_0}{\rm{ }} + {\rm{ }}D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\)

Ví dụ: Tìm khoảng cách từ điểm M(1;2;3) đến mặt phẳng (P): \(x + y + z + 12 = 0\).

Giải: \(d\left( {M,(P)} \right) = \frac{{\left| {1.1 + 1.2 + 1.3 + 12} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{{18}}{{\sqrt 3 }} = 6\sqrt 3 \).

Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo 3

Bạn đang khám phá nội dung Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo trong chuyên mục đề toán 12 trên nền tảng toán. Được biên soạn chuyên sâu và bám sát chặt chẽ chương trình sách giáo khoa hiện hành, bộ bài tập toán trung học phổ thông này cam kết tối ưu hóa toàn diện quá trình ôn luyện, củng cố kiến thức Toán lớp 12 cho học sinh THPT, thông qua phương pháp tiếp cận trực quan và mang lại hiệu quả học tập vượt trội, tạo nền tảng vững chắc cho Kỳ thi Tốt nghiệp THPT Quốc gia và hành trang vào đại học.
Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên MonToan.com.vn bằng cách gửi về:
Facebook: MÔN TOÁN
Email: montoanmath@gmail.com

Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo

Phương trình mặt phẳng là một công cụ quan trọng trong hình học không gian, giúp chúng ta mô tả và nghiên cứu các mặt phẳng trong không gian ba chiều. Trong chương trình Toán 12 Chân trời sáng tạo, việc nắm vững lý thuyết này là nền tảng để giải quyết các bài toán liên quan đến mặt phẳng, đường thẳng và mối quan hệ giữa chúng.

1. Vectơ pháp tuyến của mặt phẳng

Một vectơ được gọi là vectơ pháp tuyến của mặt phẳng nếu vectơ đó vuông góc với mọi vectơ nằm trong mặt phẳng. Vectơ pháp tuyến đóng vai trò quan trọng trong việc xác định phương trình của mặt phẳng.

Nếu n là một vectơ pháp tuyến của mặt phẳng (P), và M(x0, y0, z0) là một điểm thuộc mặt phẳng (P), thì phương trình của mặt phẳng (P) có dạng:

a(x - x0) + b(y - y0) + c(z - z0) = 0

Trong đó, n = (a, b, c) là vectơ pháp tuyến của mặt phẳng.

2. Các dạng phương trình mặt phẳng

  • Phương trình tổng quát của mặt phẳng: Ax + By + Cz + D = 0, với (A, B, C) là vectơ pháp tuyến của mặt phẳng.
  • Phương trình tham số của mặt phẳng:
    • x = x0 + at + bu
    • y = y0 + bt + cu
    • z = z0 + ct + du
    Trong đó, (a, b, c) và (u, v, d) là hai vectơ chỉ phương của mặt phẳng, (x0, y0, z0) là một điểm thuộc mặt phẳng.

3. Xác định mặt phẳng

Để xác định một mặt phẳng, chúng ta cần:

  1. Một điểm thuộc mặt phẳng.
  2. Một vectơ pháp tuyến của mặt phẳng.

Hoặc:

  1. Ba điểm không thẳng hàng thuộc mặt phẳng.
  2. Một điểm thuộc mặt phẳng và hai vectơ chỉ phương không cùng phương của mặt phẳng.

4. Các bài toán thường gặp

  • Tìm phương trình mặt phẳng khi biết vectơ pháp tuyến và một điểm: Sử dụng phương trình tổng quát của mặt phẳng.
  • Tìm phương trình mặt phẳng khi biết ba điểm: Tìm hai vectơ tạo bởi ba điểm, sau đó tính tích có hướng của hai vectơ đó để tìm vectơ pháp tuyến.
  • Xác định góc giữa hai mặt phẳng: Sử dụng công thức tính góc giữa hai vectơ pháp tuyến của hai mặt phẳng.
  • Tìm hình chiếu của một điểm lên mặt phẳng: Sử dụng công thức hình chiếu của một vectơ lên một mặt phẳng.

5. Ví dụ minh họa

Ví dụ 1: Lập phương trình mặt phẳng đi qua điểm A(1, 2, 3) và có vectơ pháp tuyến n = (2, -1, 1).

Giải: Phương trình mặt phẳng có dạng: 2(x - 1) - (y - 2) + (z - 3) = 0 ⇔ 2x - y + z - 3 = 0

Ví dụ 2: Lập phương trình mặt phẳng đi qua ba điểm A(1, 0, 0), B(0, 1, 0), C(0, 0, 1).

Giải:AB = (-1, 1, 0), AC = (-1, 0, 1). n = AB x AC = (1, 1, 1). Phương trình mặt phẳng có dạng: x + y + z - 1 = 0

6. Luyện tập và củng cố kiến thức

Để nắm vững lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo, bạn nên thực hành giải nhiều bài tập khác nhau. montoan.com.vn cung cấp một hệ thống bài tập đa dạng, từ cơ bản đến nâng cao, giúp bạn củng cố kiến thức và rèn luyện kỹ năng giải toán.

Hy vọng bài học này đã cung cấp cho bạn những kiến thức hữu ích về lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12

Tài liệu, đề thi và đáp án Toán 12