Montoan.com.vn xin giới thiệu lời giải chi tiết bài 65 trang 26 Sách bài tập Toán 12 - Cánh Diều. Bài viết này sẽ giúp học sinh hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Chúng tôi luôn cố gắng cung cấp những lời giải chính xác, dễ hiểu và phù hợp với chương trình học Toán 12 hiện hành.
Tìm tiệm cận đứng, tiệm cận ngang, tiệm cận xiên (nếu có) của đồ thị mỗi hàm số sau: a) (y = frac{{3{rm{x}} + 5}}{{{x^2} - 4}}); b) (y = frac{{ - {x^2} - 1}}{{4{{rm{x}}^2} + 9}}); c) (y = frac{{3{x^2} + x}}{{1 - x}}).
Đề bài
Tìm tiệm cận đứng, tiệm cận ngang, tiệm cận xiên (nếu có) của đồ thị mỗi hàm số sau:
a) \(y = \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}}\);
b) \(y = \frac{{ - {x^2} - 1}}{{4{{\rm{x}}^2} + 9}}\);
c) \(y = \frac{{3{x^2} + x}}{{1 - x}}\).
Phương pháp giải - Xem chi tiết
‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:
\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)
thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.
‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
‒ Tìm tiệm cận xiên \(y = ax + b\left( {a \ne 0} \right)\):
\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - ax} \right]\) hoặc
\(a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - ax} \right]\)
Lời giải chi tiết
a) Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ { - 2;2} \right\}\).
Ta có:
• \(\mathop {\lim }\limits_{x \to - {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {2^ - }} \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = - \infty ;\mathop {\lim }\limits_{x \to - {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {2^ + }} \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = + \infty \)
\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = - \infty ;\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = + \infty \)
Vậy \(x = - 2\) và \({\rm{x}} = 2\) là các tiệm cận đứng của đồ thị hàm số đã cho.
• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = 0;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = 0\)
Vậy \(y = 0\) là tiệm cận ngang của đồ thị hàm số đã cho.
b) Hàm số có tập xác định là \(\mathbb{R}\). Vậy hàm số không có tiệm cận đứng.
• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - {x^2} - 1}}{{4{{\rm{x}}^2} + 9}} = - \frac{1}{4};\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - {x^2} - 1}}{{4{{\rm{x}}^2} + 9}} = - \frac{1}{4}\)
Vậy \(y = - \frac{1}{4}\) là tiệm cận ngang của đồ thị hàm số đã cho.
c) Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}\).
Ta có:
• \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{3{x^2} + x}}{{1 - x}} = + \infty ;\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{3{x^2} + x}}{{1 - x}} = - \infty \)
Vậy \({\rm{x}} = 1\) là tiệm cận đứng của đồ thị hàm số đã cho.
• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{x^2} + x}}{{1 - x}} = - \infty ;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{3{x^2} + x}}{{1 - x}} = + \infty \)
Vậy hàm số không có tiệm cận ngang.
• \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{x^2} + x}}{{x\left( {1 - x} \right)}} = - 3\) và
\(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 3x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{3{x^2} + x}}{{1 - x}} + 3x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{4{\rm{x}}}}{{1 - x}} = - 4\)
Vậy đường thẳng \(y = - 3{\rm{x}} - 4\) là tiệm cận xiên của đồ thị hàm số đã cho.
Bài 65 trang 26 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học về Đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của hàm hợp và đạo hàm của hàm lượng giác. Việc nắm vững kiến thức lý thuyết và kỹ năng tính toán là yếu tố then chốt để giải quyết bài tập này một cách hiệu quả.
Bài 65 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 65 trang 26, chúng ta sẽ đi vào phân tích từng dạng bài tập cụ thể.
Ví dụ: Tính đạo hàm của hàm số y = sin(2x + 1).
Lời giải:
Sử dụng quy tắc đạo hàm của hàm hợp, ta có:
y' = cos(2x + 1) * (2x + 1)' = 2cos(2x + 1)
Ví dụ: Tính đạo hàm của hàm số y = e^(x^2 + 1).
Lời giải:
Sử dụng quy tắc đạo hàm của hàm hợp, ta có:
y' = e^(x^2 + 1) * (x^2 + 1)' = 2xe^(x^2 + 1)
Ví dụ: Giải phương trình 2cos(x) + 1 = 0.
Lời giải:
Ta có: 2cos(x) + 1 = 0 => cos(x) = -1/2
Giải phương trình lượng giác, ta được: x = 2π/3 + kπ, k ∈ Z
Để giải các bài tập về đạo hàm một cách hiệu quả, các em học sinh nên:
Ngoài sách giáo khoa và sách bài tập, các em học sinh có thể tham khảo thêm các tài liệu sau:
Bài 65 trang 26 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và những lời khuyên hữu ích trên đây, các em sẽ tự tin hơn khi giải quyết bài tập này và đạt kết quả tốt trong môn Toán.