Chào mừng các em học sinh đến với lời giải chi tiết bài 1.30 trang 25 Sách bài tập Toán 11 - Kết nối tri thức của Montoan.com.vn. Bài viết này sẽ giúp các em hiểu rõ phương pháp giải và nắm vững kiến thức liên quan.
Montoan.com.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các bài giải chuẩn xác, dễ hiểu và nhiều tài liệu học tập hữu ích khác.
Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t (ở đây t là số ngày tính từ ngày 1 tháng giêng)
Đề bài
Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t (ở đây t là số ngày tính từ ngày 1 tháng giêng) của một năm không nhuận được mô hình hóa bởi hàm số:
\(L\left( t \right) = 12 + 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right)\) với \(t \in \mathbb{Z}\) và \(0 < t \le 365\)
a) Vào ngày nào trong năm thì thành phố A có ít giờ ánh sáng mặt trời nhất?
b) Vào ngày nào trong năm thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?
c) Vào ngày nào trong năm thì thành phố A có khoảng 10 giờ ánh sáng mặt trời?
Phương pháp giải - Xem chi tiết
* Sử dụng kiến thức \( - 1 \le \sin x \le 1\) với mọi x
* Sử dụng cách giải phương trình \(\sin x = m\) (1)
+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.
+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\sin \alpha = m\).
Khi đó, phương trình (1) tương đương với:
\(\sin x = m \Leftrightarrow \sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
Lời giải chi tiết
Vì \( - 1 \le \sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) \le 1\) nên \( - 2,83 \le 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) \le 2,83\)
Do đó, \(9,17 = 12 - 2,83 \le 12 + 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) \le 12 + 2,83 = 12,83\;\forall t \in \mathbb{R}\)
a) Ngày thành phố A có ít giờ ánh sáng nhất ứng với \(\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) = - 1 \Leftrightarrow \frac{{2\pi }}{{365}}\left( {t - 80} \right) = \frac{{ - \pi }}{2} + k2\pi \Leftrightarrow t = \frac{{ - 45}}{4} + 365k\left( {k \in \mathbb{Z}} \right)\)
Vì \(0 < t \le 365\) nên \(k = 1,\) suy ra \(t = \frac{{ - 45}}{4} + 365 = 353,75.\) Như vậy, vào ngày thứ 353 của năm, tức là khoảng ngày 20 tháng 12 thì thành phố A sẽ có ít giờ ánh sáng mặt trời nhất.
b) Ngày thành phố A có nhiều giờ ánh sáng nhất ứng với \(\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) = 1 \Leftrightarrow \frac{{2\pi }}{{365}}\left( {t - 80} \right) = \frac{\pi }{2} + k2\pi \Leftrightarrow t = \frac{{45}}{4} + 365k\left( {k \in \mathbb{Z}} \right)\)
Vì \(0 < t \le 365\) nên \(k = 0,\) suy ra \(t = 171,25.\) Như vậy, vào ngày thứ 171 của năm, tức là khoảng ngày 20 tháng 6 thì thành phố A sẽ có nhiều giờ ánh sáng mặt trời nhất.
c) Thành phố A có khoảng 10 giờ ánh sáng mặt trời trong ngày nếu
\(12 + 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) = 10 \Leftrightarrow 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) = \frac{{ - 200}}{{283}}\)
\( \Leftrightarrow \left[ \begin{array}{l}\frac{{2\pi }}{{365}}\left( {t - 80} \right) \approx - 0,78 + k2\pi \\\frac{{2\pi }}{{365}}\left( {t - 80} \right) \approx 3,938 + k2\pi \end{array} \right.\)
Từ đó ta được \(\left[ \begin{array}{l}t \approx 34,69 + 365k\\t \approx 308,3 + 365k\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
Vì \(0 < t \le 365\) nên \(k = 0,\) suy ra \(t \approx 34,69\) hoặc \(t \approx 308,30.\) Như vậy, vào ngày thứ 34 của năm, tức là khoảng ngày 3 tháng 2 và ngày thứ 308 của năm, tức là ngày 4 tháng 11 thì thành phố A có khoảng 10 giờ ánh sáng mặt trời.
Bài 1.30 trang 25 Sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về vectơ để giải quyết các bài toán hình học. Bài toán này yêu cầu học sinh phải nắm vững các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và đặc biệt là ứng dụng của vectơ trong việc chứng minh các tính chất hình học.
Bài 1.30 thường xoay quanh việc chứng minh một đẳng thức vectơ liên quan đến các điểm trong một hình học cụ thể, ví dụ như chứng minh hai vectơ bằng nhau, chứng minh ba điểm thẳng hàng, hoặc chứng minh một tứ giác là hình bình hành. Để giải quyết bài toán này, học sinh cần:
Để cung cấp lời giải chi tiết, chúng ta cần xem xét một ví dụ cụ thể của bài 1.30. Giả sử bài toán yêu cầu chứng minh rằng với tam giác ABC, nếu M là trung điểm của BC thì MA = MB + MC.
Lời giải:
Vì M là trung điểm của BC, ta có MB = MC. Do đó, MB + MC = 2MC. Tuy nhiên, biểu thức MA = MB + MC không đúng trong mọi trường hợp. Biểu thức đúng phải là MA + MB + MC = 0 (vectơ tổng của ba vectơ này bằng vectơ không).
Để chứng minh MA + MB + MC = 0, ta có thể sử dụng quy tắc cộng vectơ. MA và MB là hai vectơ ngược chiều nhau và có độ dài bằng nhau, do đó MA + MB = 0. Suy ra MA + MB + MC = MC. Điều này cho thấy biểu thức ban đầu không đúng.
Ngoài bài 1.30, còn rất nhiều bài tập tương tự yêu cầu học sinh vận dụng kiến thức về vectơ để giải quyết các bài toán hình học. Một số dạng bài tập phổ biến bao gồm:
Để giải quyết các bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, các quy tắc phép toán vectơ, và đặc biệt là khả năng tư duy logic và phân tích hình học.
Khi giải bài tập về vectơ, học sinh cần lưu ý một số điểm sau:
Để học tập và ôn luyện kiến thức về vectơ, học sinh có thể tham khảo các tài liệu sau:
Bài 1.30 trang 25 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải quyết các bài toán hình học. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ tự tin hơn trong quá trình học tập.