Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 11 tập 1 của montoan.com.vn. Trong bài viết này, chúng ta sẽ cùng nhau giải chi tiết các bài tập trong mục 3, trang 69, 70, 71, 72, 73 của sách giáo khoa Toán 11 tập 1.
Mục tiêu của chúng tôi là giúp các em hiểu rõ bản chất của từng bài toán, nắm vững phương pháp giải và tự tin làm bài tập.
Cho hàm số \(y = f(x) = \frac{1}{x}\)
Cho hàm số \(y = f(x) = \frac{1}{x}\)
a, Tìm tập xác định của hàm số.
b, Tính giá trị của hàm số tại các điểm trong bảng giá trị sau:
c, Nhận xét gì về giá trị của f(x) khi x dần đến \( + \infty \)? Khi x dần đến \( - \infty \)?
Phương pháp giải:
Tập xác định là các giá trị của x để hàm số có nghĩa.
Thay giá trị của x vào hàm số để được các giá trị của f(x) tương ứng.
Lời giải chi tiết:
a, Tập xác định: R\{0}.
b, Thay lần lượt các giá trị của x vào f(x) ta được:
\(\)x dần đến \( - \infty \) thì f(x)=0
\(f( - {10^8}) = \frac{1}{{ - {{10}^8}}} = - {10^{ - 8}}\)
\(f(10) = \frac{1}{{10}}\)
\(f( - {10^3}) = \frac{1}{{ - {{10}^3}}} = - {10^{ - 3}}\)
\(f(1000) = \frac{1}{{1000}} = {10^{ - 3}}\)
\(f( - {10^2}) = \frac{1}{{ - {{10}^2}}} = - {10^{ - 2}}\)
\(f(100000) = \frac{1}{{100000}} = {10^{ - 5}}\)
\(f( - 10) = \frac{1}{{ - 10}} = \frac{{ - 1}}{{10}}\)
\(f({10^9}) = \frac{1}{{{{10}^9}}} = {10^{ - 9}}\)
x dần đến \( + \infty \) thì f(x)=0.
c, Khi x dần đến và x dần đến thì f(x)=0.
Cho hàm số \(f(x) = \frac{{\sqrt {{x^2} + 1} }}{x}\). Tìm \(\mathop {\lim }\limits_{x \to - \infty } f(x)\) và \(\mathop {\lim }\limits_{x \to + \infty } f(x)\).
Phương pháp giải:
Đưa x ra khỏi dấu căn để chia cả tử và mẫu cho x.
Với x dần đến \( - \infty \) thì |x| = -x
Với x dần đến \( + \infty \) thì |x| = x.
Lời giải chi tiết:
Hàm số có tập xác định là \(( - \infty ;0) \cup (0; + \infty )\)
Giả sử \(({x_n})\) là một dãy số bất kì thỏa mãn \({x_n} < 0\) và \(\lim {x_n} = - \infty \)
Ta có \(\lim f({x_n}) = \frac{{\sqrt {x_n^2 + 1} }}{{{x_n}}} = \lim \frac{{\left| {{x_n}} \right|.\sqrt {1 + \frac{1}{{x_n^2}}} }}{{{x_n}}} = \lim \frac{{ - {x_n}.\sqrt {1 + \frac{1}{{x_n^2}}} }}{{{x_n}}} = \lim ( - \sqrt {1 + \frac{1}{{x_n^2}}} ) = - 1\)
Giả sử \(({x_n})\) là một dãy số bất kì thỏa mãn \({x_n} > 0\) và \(\lim {x_n} = + \infty \)
Ta có \(\lim f({x_n}) = \frac{{\sqrt {x_n^2 + 1} }}{{{x_n}}} = \lim \frac{{\left| {{x_n}} \right|.\sqrt {1 + \frac{1}{{x_n^2}}} }}{{{x_n}}} = \lim \frac{{{x_n}.\sqrt {1 + \frac{1}{{x_n^2}}} }}{{{x_n}}} = \lim \sqrt {1 + \frac{1}{{x_n^2}}} = 1\)
Vậy \(\mathop {\lim }\limits_{x \to - \infty } f(x) = - 1\) và \(\mathop {\lim }\limits_{x \to + \infty } f(x) = 1\).
Tìm \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} - 4} }}{{x + 5}}\).
Phương pháp giải:
Đưa x ra khỏi dấu căn để chia cả tử và mẫu cho x.
Với x dần đến \( - \infty \) thì |x| = -x
Lời giải chi tiết:
Hàm số có tập xác định là \(( - \infty ; - 5) \cup ( - 5; + \infty )\)
Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} - 4} }}{{x + 5}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\left| x \right|.\sqrt {1 - \frac{4}{{{x^2}}}} }}{{x + 5}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x\sqrt {1 - \frac{4}{{{x^2}}}} }}{{x + 5}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {1 - \frac{4}{{{x^2}}}} }}{{1 + \frac{5}{x}}}\)
Vì \(\mathop {\lim }\limits_{x \to - \infty } - \sqrt {1 - \frac{4}{{{x^2}}}} = - 1\) , lim 1=1 và \(\mathop {\lim }\limits_{x \to - \infty } \frac{5}{x} = 0\) ta có:
\(\mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {1 - \frac{4}{{{x^2}}}} }}{{1 + \frac{5}{x}}} = - 1\).
Cho hàm số \(f(x) = {x^2}\) và dãy số \(({x_n})\) với \({x_n} = n + 1\)
a, Tìm \({\mathop{\rm l}\nolimits} {\rm{im }}{{\rm{x}}_n}\)
b, Tính \(f({x_n})\) theo n và tìm \({\mathop{\rm l}\nolimits} {\rm{im f(}}{{\rm{x}}_n})\).
Phương pháp giải:
a, Thay \({x_n} = n + 1\) để tìm \({\mathop{\rm l}\nolimits} {\rm{im }}{{\rm{x}}_n}\)
b, Thay \({x_n} = n + 1\) vào hàm số \(f(x) = {x^2}\) để tìm \(f({x_n})\)
Dựa vào câu a để xác định \({\mathop{\rm l}\nolimits} {\rm{im f(}}{{\rm{x}}_n})\).
Lời giải chi tiết:
a, Ta có: \({\mathop{\rm l}\nolimits} {\rm{im }}{{\rm{x}}_n} = \lim (n + 1)\)
\(\mathop {\lim }\limits_{n \to - \infty } (n + 1) = - \infty \) và \(\mathop {\lim }\limits_{n \to + \infty } (n + 1) = + \infty \).
b, Thay \({x_n} = n + 1\) vào hàm số \(f(x) = {x^2}\) ta được:
\(f({x_n}) = {(n + 1)^2}\)
\(\mathop {\lim }\limits_{n \to - \infty } {\rm{f(}}{{\rm{x}}_n}) = \mathop {\lim }\limits_{n \to - \infty } {(n + 1)^2} = + \infty \) và \(\mathop {\lim }\limits_{n \to + \infty } {\rm{f(}}{{\rm{x}}_n}) = \mathop {\lim }\limits_{n \to + \infty } {(n + 1)^2} = + \infty \).
Tìm \(\mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + 1}}{x}\)
Phương pháp giải:
Chia tử cho mẫu để tính giới hạn
Lời giải chi tiết:
Hàm số \(f(x) = \frac{{{x^2} + 1}}{x} = x + \frac{1}{x}\) có tập xác định là \(( - \infty ;0) \cup (0; + \infty )\)
\(\forall ({x_n}),{x_n} < 0\)và \({\mathop{\rm l}\nolimits} {\rm{im }}{{\rm{x}}_n} = - \infty \), ta có \(\lim f({x_n}) = \lim ({x_n} + \frac{1}{{{x_n}}}) = {\mathop{\rm l}\nolimits} {\rm{im }}{{\rm{x}}_n}(1 + \frac{1}{{x_n^2}})\)
Vì \({\mathop{\rm l}\nolimits} {\rm{im x}}_n^2 = + \infty \) nên \(\lim \frac{1}{{x_n^2}} = 0\). Suy ra \(\lim (1 + \frac{1}{{x_n^2}}) = 1\)
Vì \({\mathop{\rm l}\nolimits} {\rm{im }}{{\rm{x}}_n} = - \infty \) và \(\lim (1 + \frac{1}{{x_n^2}}) = 1\) nên \({\mathop{\rm l}\nolimits} {\rm{im }}{{\rm{x}}_n}(1 + \frac{1}{{x_n^2}}) = - \infty \)
Vậy \(\mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + 1}}{x} = - \infty \).
Cho hàm số \(f(x) = \frac{{x - 1}}{{x + 1}}\) và g(x)=x+1
a, Tìm \(\mathop {\lim }\limits_{x \to + \infty } f(x)\) và \(\mathop {\lim }\limits_{x \to + \infty } g(x)\)
b, Tìm \(\mathop {\lim }\limits_{x \to + \infty } {\rm{[}}f(x).g(x){\rm{]}}\).
Phương pháp giải:
a, Với f(x) chia tử cho mẫu để tìm giới hạn
Với g(x) thì \(\mathop {\lim }\limits_{x \to + \infty } g(x) = \mathop {\lim }\limits_{x \to + \infty } (x + 1) = + \infty \)
b, Tính f(x). g(x) và dựa vào câu a xác định \(\mathop {\lim }\limits_{x \to + \infty } {\rm{[}}f(x).g(x){\rm{]}}\)
Lời giải chi tiết:
a, Hàm số \(f(x) = \frac{{x - 1}}{{x + 1}} = 1 - \frac{2}{{x + 1}}\) có tập xác định \(( - \infty , - 1) \cup ( - 1; + \infty )\)
\(\mathop {\lim }\limits_{x \to + \infty } f(x) = \mathop {\lim }\limits_{x \to + \infty } (1 - \frac{2}{{x + 1}}) = 1\)
\(\mathop {\lim }\limits_{x \to + \infty } g(x) = \mathop {\lim }\limits_{x \to + \infty } (x + 1) = + \infty \)
b, Ta có: \(f(x).g(x) = \frac{{x - 1}}{{x + 1}}.(x + 1) = x - 1\)
\(\mathop {\lim }\limits_{x \to + \infty } f(x).g(x) = \mathop {\lim }\limits_{x \to + \infty } (x - 1) = + \infty \).
Tìm \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{\sqrt {{x^2} + 2x} }}\).
Phương pháp giải:
Xác định \(\mathop {\lim }\limits_{x \to {0^ + }} \sqrt {{x^2} + 2x} \) để tìm \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{\sqrt {{x^2} + 2x} }}\)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to {0^ + }} \sqrt {{x^2} + 2x} \)=0 và \(\sqrt {{x^2} + 2x} > 0,\forall x > 0\) nên \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{\sqrt {{x^2} + 2x} }} = + \infty \).
Trong một cuộc thi các môn thể thao trên tuyết, người ta muốn thiết kế một đường trượt bằng bang cho nội dung đổ dốc tốc độ đường dài
Vận động viên sẽ xuất phát từ vị trí (0; 15) cao 15 m so với mặt đất (trục 0x) . Đường trượt phải thỏa mãn yêu cầu là càng ra xa thì càng gần mặt đất để tiết kiệm lượng tuyết nhân tạo. Một nhà thiết kế đề nghị sử dụng đường cong là đồ thị \(y = f(x) = \frac{{150}}{{x + 10}}\) với \(x \ge 0\). Hãy kiểm tra xem hàm số y=f(x) có thỏa mãn các điều kiện dưới đây hay không:
a, Có đồ thị đi qua điểm (0,15)
b, Giảm trên \(\left[ {0, + \infty } \right]\)
c, Càng ra xa ( x càng lớn), đồ thị càng gần trục Ox với khoảng cách nhỏ tùy ý.
Phương pháp giải:
a, Thay tọa độ (0,15) vào hàm số để kiểm tra điểm có thuộc hàm số hay không?
b, Nhận xét với x càng tăng thì giá trị f(x) càng giảm
c, Tính lim f(x) khi x dần đến \( + \infty \)
Lời giải chi tiết:
a, Thay x=0 vào hàm số \(y = f(x) = \frac{{150}}{{x + 10}}\) ta được:
\(y = \frac{{150}}{{0 + 10}} = \frac{{150}}{{10}} = 15\)
Vậy điểm (0,15) thuộc đồ thị hàm số.
b, Nhận thấy khi x càng tăng thì giá trị hàm số càng giảm. Vậy hàm số \(y = f(x) = \frac{{150}}{{x + 10}}\) giảm trên \(\left[ {0, + \infty } \right]\)
c, Ta có : \(\mathop {\lim }\limits_{x \to + \infty } \frac{{150}}{{x + 10}} = 0\)
Vậy càng ra xa ( x càng lớn), đồ thị càng gần trục Ox với khoảng cách nhỏ tùy ý.
Mục 3 của SGK Toán 11 tập 1 tập trung vào các kiến thức về phép biến hình. Đây là một phần quan trọng trong chương trình học, giúp học sinh hiểu rõ hơn về các khái niệm cơ bản như phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm.
Mục 3 bao gồm các nội dung sau:
Dưới đây là phần giải chi tiết các bài tập trong mục 3, trang 69, 70, 71, 72, 73 của SGK Toán 11 tập 1:
Đề bài: Cho điểm A(1; 2). Tìm ảnh của điểm A qua phép tịnh tiến theo vectơ v = (3; -1).
Giải: Gọi A'(x'; y') là ảnh của điểm A qua phép tịnh tiến theo vectơ v. Khi đó, ta có:
x' = x + vx = 1 + 3 = 4
y' = y + vy = 2 + (-1) = 1
Vậy, A'(4; 1).
Đề bài: Cho điểm B(-2; 3). Tìm ảnh của điểm B qua phép quay tâm O(0; 0) góc 90 độ.
Giải: Gọi B'(x'; y') là ảnh của điểm B qua phép quay tâm O(0; 0) góc 90 độ. Khi đó, ta có:
x' = -y = -3
y' = x = -2
Vậy, B'(-3; -2).
Đề bài: Cho điểm C(4; -1). Tìm ảnh của điểm C qua phép đối xứng trục Ox.
Giải: Gọi C'(x'; y') là ảnh của điểm C qua phép đối xứng trục Ox. Khi đó, ta có:
x' = x = 4
y' = -y = 1
Vậy, C'(4; 1).
Đề bài: Cho điểm D(-1; 5). Tìm ảnh của điểm D qua phép đối xứng tâm I(2; -3).
Giải: Gọi D'(x'; y') là ảnh của điểm D qua phép đối xứng tâm I(2; -3). Khi đó, ta có:
x' = 2xi - x = 2(2) - (-1) = 5
y' = 2yi - y = 2(-3) - 5 = -11
Vậy, D'(5; -11).
Đề bài: Chứng minh rằng phép tịnh tiến và phép quay là các phép biến hình.
Giải: Để chứng minh một phép biến hình, ta cần chứng minh rằng nó bảo toàn khoảng cách giữa hai điểm bất kỳ.
Chứng minh phép tịnh tiến: Cho hai điểm A và B bất kỳ. Gọi A' và B' lần lượt là ảnh của A và B qua phép tịnh tiến theo vectơ v. Ta cần chứng minh rằng AB = A'B'. Theo định nghĩa của phép tịnh tiến, ta có:
A'B' = |v| = AB
Vậy, phép tịnh tiến bảo toàn khoảng cách giữa hai điểm bất kỳ, do đó là một phép biến hình.
Chứng minh phép quay: (Tương tự như chứng minh phép tịnh tiến, sử dụng định lý cosin để chứng minh A'B' = AB)
Để nắm vững kiến thức về phép biến hình, các em cần:
Hy vọng với bài viết này, các em sẽ hiểu rõ hơn về mục 3, trang 69, 70, 71, 72, 73 SGK Toán 11 tập 1 và tự tin hơn trong quá trình học tập. Chúc các em học tốt!